Answer:
1. be the first line of treatment for minor health conditions
2.be the first line of assessment and decision making for further diagnosis and/or treatment and for referral to a higher level facility
3. be a center for all public health activities, such as outreach ...
4. provide basic health services to people who live in rural areas.
Answer:
if i do give me brainliest ok ok
Explanation:
Answer: D
Height of marble from ground
Explanation:
From the formula of kinetic energy and potential energy,
K.E = 1/2mv^2
While
P.E = mgh
From all the parameters given from the question. You can see that mass is constant, acceleration due to gravity is also constant.
Independent variable must be a value that can varies.
Since Jack rolled a marble down a ramp and recorded the potential energy and kinetic energy of the marble at different positions on the ramp to see the effects on both energies.
This different position must be the height which will produce an effect on the potential and kinetic energy of the marble.
Independent variable always provides an effect for dependent variable. Which are kinetic energy and potential energy in this case.
Height of marble from ground is the right answer.
ENERGY = POWER X TIME
=60 X 120=7200KWh
To solve this problem it is necessary to apply the concepts related to the principle of superposition and constructive interference, that is to say everything that refers to an overlap of two or more equal frequency waves, which when interfering create a new pattern of waves of greater intensity (amplitude) whose cusp is the antinode.
Mathematically its definition can be given as:

Where
d = Width of the slit
Angle between the beam and the source
m = Order (any integer) which represent the number of repetition of the spectrum, at this case 1 (maximum respect the wavelength)
Since the point of the theta angle for which the diffraction becomes maximum will be when it is worth one then we have to:


Applying the given relation of frequency, speed and wavelength then we will have that the frequency would be:

Here the velocity is equal to the speed of light and the wavelength to the value previously found.


Therefore the smallest microwave frequency for which only the central maximum occurs is 1.5Ghz