Answer:
4th answer
Explanation:
The gradient of a distance-time graph gives the speed.
gradient = distance / time = speed
Here, the gradient is a constant till 30s. So it has travelled at a constant speed. It means it had not accelarated till 30s. and has stopped moving at 30s.
Find the volume of the bottom and top separately and then add them.
Cylinder volume is the area of the bottom times the height
(22/7)(5^2)•175=13750 ft^3
The volume of a sphere is
V=(4/3)(22/7)r^3
where r is the radius. Here that's also 5 since it fits on the cylinder.
Also we only want half the sphere so use
V=(2/3)(22/7)•5^3=261.9 ft^3
Which we round upto 262.
Now add the parts together
13750+262=14,012 ft^3
<span>Hydrocarbons are molecules that contain only carbon and hydrogen.</span>
Due to carbon's unique bonding patterns, hydrocarbons can have single, double, or triple bonds between the carbon atoms.
The names of hydrocarbons with single bonds end in "-ane," those
with double bonds end in "-ene," and those with triple bonds end in
"-yne".
The bonding of hydrocarbons allows them to form rings or chains.
Here are the answers to the question. Make sure to give a valid reason, please.
A. the sum of the protons and neutrons in one atom of the element.
B. a ratio based on the mass of a carbon-12 atom.
C. a weighted average of the masses of an element's isotopes.
D. twice the number of protons in one atom of the element.
A) 
The total energy of the system is equal to the maximum elastic potential energy, that is achieved when the displacement is equal to the amplitude (x=A):
(1)
where k is the spring constant.
The total energy, which is conserved, at any other point of the motion is the sum of elastic potential energy and kinetic energy:
(2)
where x is the displacement, m the mass, and v the speed.
We want to know the displacement x at which the elastic potential energy is 1/3 of the kinetic energy:

Using (2) we can rewrite this as

And using (1), we find

Substituting
into the last equation, we find the value of x:

B) 
In this case, the kinetic energy is 1/10 of the total energy:

Since we have

we can write

And so we find:
