Answer:
B. +m
Explanation:
The magnification of an image is defined as the ratio between the size of the image and of the object:

where we have
y' = size of the image
y = size of the object
There are two possible situations:
- When m is positive, y' has same sign as y: this means that the image image is upright
- When m is negative, y' has opposite sign to y: this means that the image is upside down
Therefore, the correct option representing an upright image is
B. +m
The heat coming from the sun warms the land more quickly than the sea. As a result of these, the air near the land warm up and rises and the cooler air from the sea moves in to replace the risen air. The correct answer is option A
There will be heat transfer from a region of higher temperature to the region of lower temperature. But in the case of land and sea breeze, the transfer of heat are the result of convectional current in nature. Because the land is a better absorber of heat and also has a lower specific heat capacity compare to sea, during the day, the heat coming from the sun warms the land more quickly than the sea. As a result of these, the air near the land warm up and rises.
The cooler air from the sea moves in to replace the risen air.
Why do ocean winds or sea breezes blow toward shore during the day ? It is because air over the beach heats up, rises and is replaced by ocean air.
Therefore, option A is correct
Learn more here : brainly.com/question/1114842
Answer:
I believe that the answer is d.
Explanation:
Because there is nothing to make the aircraft accelerate or decelerate, it is going to stay in constant motion with no acceleration.
The velocity increased from 4 m/s to 22 m/s in 3 seconds. 18 m/s in 3 seconds so the average acceleration is change in velocity divided by time. 18 m/s divided by 3 seconds = 6 m/s^2
Answer:
The magnitude of angular acceleration is
.
Explanation:
Given that,
Initial angular velocity, 
When it switched off, it comes o rest, 
Number of revolution, 
We need to find the magnitude of angular acceleration. It can be calculated using third equation of rotational kinematics as :
So, the magnitude of angular acceleration is
. Hence, this is the required solution.