1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mixas84 [53]
3 years ago
14

Please follow me guys ​

Physics
1 answer:
Lilit [14]3 years ago
7 0

Answer:

if i do give me brainliest ok ok

Explanation:

You might be interested in
A 125-kg astronaut (including space suit) acquires a speed of 2.50 m/s by pushing off with her legs from a 1900-kg space capsule
ryzh [129]

(a) 0.165 m/s

The total initial momentum of the astronaut+capsule system is zero (assuming they are both at rest, if we use the reference frame of the capsule):

p_i = 0

The final total momentum is instead:

p_f = m_a v_a + m_c v_c

where

m_a = 125 kg is the mass of the astronaut

v_a = 2.50 m/s is the velocity of the astronaut

m_c = 1900 kg is the mass of the capsule

v_c is the velocity of the capsule

Since the total momentum must be conserved, we have

p_i = p_f = 0

so

m_a v_a + m_c v_c=0

Solving the equation for v_c, we find

v_c = - \frac{m_a v_a}{m_c}=-\frac{(125 kg)(2.50 m/s)}{1900 kg}=-0.165 m/s

(negative direction means opposite to the astronaut)

So, the change in speed of the capsule is 0.165 m/s.

(b) 520.8 N

We can calculate the average force exerted by the capsule on the man by using the impulse theorem, which states that the product between the average force and the time of the collision is equal to the change in momentum of the astronaut:

F \Delta t = \Delta p

The change in momentum of the astronaut is

\Delta p= m\Delta v = (125 kg)(2.50 m/s)=312.5 kg m/s

And the duration of the push is

\Delta t = 0.600 s

So re-arranging the equation we find the average force exerted by the capsule on the astronaut:

F=\frac{\Delta p}{\Delta t}=\frac{312.5 kg m/s}{0.600 s}=520.8 N

And according to Newton's third law, the astronaut exerts an equal and opposite force on the capsule.

(c) 25.9 J, 390.6 J

The kinetic energy of an object is given by:

K=\frac{1}{2}mv^2

where

m is the mass

v is the speed

For the astronaut, m = 125 kg and v = 2.50 m/s, so its kinetic energy is

K=\frac{1}{2}(125 kg)(2.50 m/s)^2=390.6 J

For the capsule, m = 1900 kg and v = 0.165 m/s, so its kinetic energy is

K=\frac{1}{2}(1900 kg)(0.165 m/s)^2=25.9 J

3 0
3 years ago
The universe could be considered an isolated system because
Stolb23 [73]

Answer:

A(many people think that no energy or matter exists outside the universe)

Explanation:

4 0
3 years ago
What is the mass of an object if a 30 N force makes it accelerate at 6 m/s2
jasenka [17]

Answer:

5 kg

Explanation:

Acceleration = 6 m/s^2

Force = 30 N

Force = mass * acceleration

mass = force / acceleration

mass = 30 / 6

mass = 5 kg

4 0
2 years ago
When a driver hits the brakes, his car decelerates from 50m/s at a uniform rate of 2.0m/s^2. His car stops after covering some d
Assoli18 [71]

Please find attached photograph for your answer. Please do comment whether it is useful or not.

7 0
3 years ago
A horse of mass 242 kg pulls a cart of mass 224 kg. The acceleration of gravity is 9.8 m/s 2 . What is the largest acceleration
Rufina [12.5K]

To solve this problem it is necessary to apply the concepts related to Newton's second Law and the force of friction. According to Newton, the Force is defined as

F = ma

Where,

m= Mass

a = Acceleration

At the same time the frictional force can be defined as,

F_f = \mu N

Where,

\mu = Frictional coefficient

N = Normal force (mass*gravity)

Our values are given as,

m_h = 242 kg\\m_c = 224 kg\\\mu = 0.894\\

By condition of Balance the friction force must be equal to the total net force, that is to say

F_{net} = F_f

m_{total}a = \mu m_hg

(m_h+m_c)a = \mu*m_h*g

Re-arrange to find acceleration,

a= \frac{\mu*m_h*g}{(m_h+m_c)}

a = \frac{0.894*242*9.8}{(242+224)}

a = 4.54 m/s^2

Therefore the acceleration the horse can give is 4.54m/s^2

3 0
3 years ago
Other questions:
  • 2. A body moves with a uniform speed of 1.5 ms-1 for 20 seconds. Find the distance covered by it.
    9·1 answer
  • Compare the energy consumption of two commonly used items in the household. calculate the energy used by a 1.20 kw toaster oven,
    11·2 answers
  • A spring operated dart gun fires 10 g darts. Arming the gun requires 185 N of force and results in the shortening of the spring
    15·1 answer
  • True or Flase The fastest moving traffic on the expressway will be traveling in the right lane
    7·1 answer
  • A net force of 10 N accelerates an object at 5.0 m/s^2. What is the mass of the object? A. 2 kg B. 10 kg C. 5 kg D. 20 kg
    13·1 answer
  • Scientists have found that the most destructive and deadly tornadoes occur from rotating thunderstorms called
    10·2 answers
  • Pink
    7·1 answer
  • What does the word radiation mean
    5·2 answers
  • What is the origin of a warm, wet air masses.
    6·2 answers
  • Describe how the forces of gravity and friction affect the motion that occurs as you write on this page.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!