Answer:
ax² + bx + c
Step-by-step explanation:
The form of a quadratic equation that is easy to use when finding the maximum or minimum value of the function is ax² + bx + c.
Suppose a quadratic function:
f(x) = 2x² - 8x + 9
Use ( -b/2a , f(-b/2a) ).
-b/2a
a = 2
b = -8
-(-8)/2(2)
8/4
= 2
f(2) = 2(2)² - 8(2) + 9
f(2) = 2(4) - 8(2) + 9
f(2) = 8 - 16 + 9
f(2) = 1
The minimum value of this quadratic function is (2, 1).
It represents a minimum value because a > 0.
1. 3 yards 2. 3520 yards 3. 3 ft 8 in 4. 84 inches 5. 15840 6. 9 feet 7. 6 feet 8. 25 inches 9. 1 yard 9 inches
Answer:
120
Step-by-step explanation:
Answer:
1 x=-2.5 y = -5.5
2. x=5 y=1
Step-by-step explanation:
1) What is the solution of the given system?
5x-y=-7
3x-y=-2
Multiply the second equation by -1
-1*(3x-y)=-1(-2)
-3x +y = 2
Now add the first equation to the modified second equation
5x-y=-7
-3x +y = 2
------------------
2x = -5
Divide each side by 2
2x/2 = -5/2
x = -2.5
Now we need to find y
-3x+y =2
-3(-2.5) +y =2
7.5 +y =2
Subtract 7.5 from each side
7.5 -7.5 +y =2-7.5
y = -5.5
2) what is the solution of the given system?
5x+7y=32
8x+6y=46
Divide the second equation by 2
8x/2+6y/2=46/2
4x+3y =23
Multiply the first equation by 4
4 (5x+7y)=32*4
20x+28y = 128
Now multiply the modified 2nd equation by -5
-5(4x+3y )=-5(23
)
-20x -15y = -115
Lets add the new equations together to eliminate x
20x+28y = 128
-20x -15y = -115
---------------------
13y = 13
Divide each side by 13
13y/13 =13/13
y=1
Now substitute back in to find x
5x+7y=32
5x +7(1) =32
5x +7 =32
Subtract 7 from each side
5x+7-7 =32-7
5x =25
Divide by 5
5x/5 =25/5
x=5
Given problem;
A = 4 π R²
To solve for R, we have to make it the subject of the expression.
Since
A = 4 π R² , follow these steps to find R;
Multiply both sides by
A x
=
x 4 π R²
= R²
Then find the square root of both sides
√R² =
R = 
The solution is 