Answer:
The specific question is not stated, however the general idea is given in the attached picture. The electric field in each region can be found by Gauss’ Law.
at r < R:
Since the solid sphere is conducting, the total charge Q is distributed over the surface, and the electric field inside the sphere is zero.
E = 0.
at R < r < 2R:
The electric field can be found by Gauss’ Law as in the attachment. The green pencil shows this exact region.
at 2R < r:
The electric field can again be found by Gauss’ Law, the blue pencil shows the calculations for this region.
Explanation:
Gauss’ Law is straightforward when applied to spheres. The area of the sphere is
, and the enclosed charge is given in the question as Q for the inner sphere, and 2Q for the whole system.
If you stand up in a big room and echo, your voice will echo
from the walls. As long as the room is empty. Since
the speed of sound is constant, depending on air density, the more humid the
air the faster and farther sound travels. The
speed of sound is constant, you could measure the time it takes for your voice
to echo off the walls. The same thing happens with Doppler radar, but it’s not voice,
it has higher frequency signals.<span> </span>
Answer:
975 m/s^2
Explanation:
The formula for rate of acceleration is
(Final velocity - intial velocity)/ time taken
If you plug in your data you will get 975 m/s^2
(1600 m/s -1210 m/s )/.4 s = 975 m^2
Answer:
B. They are the electrons that interact with other atoms.
Explanation:
Valence electrons are the electrons in the outermost shell of an atom. These electrons are used by atoms to form bonds with other atoms during chemical bonding.
- So, the basis by which atoms interacts with one another is through the valence electrons.
- Without the valence electrons, atomic combination to form compounds would not be possible.
- Valence electrons are the most loosely held electrons and they have the lowest ionization energy.