The answer is Density. The Density of the <span>glass is measured with bromoform and bromobenzene mixtures in a column. </span>Density measurement<span> is done using Density gradient </span>columns. It is a <span> temperature-controlled density </span>column<span> containing a </span>mixture<span> of b</span>romobenzene<span> and </span>bromoform.
Characteristics help us to classify seeds because different plants have different features.
<h3>How are characteristics used to identify and classify plants?</h3>
The divisions classify plants that are based on whether they reproduce by spores or seeds. Spore-bearing plants include ferns, club mosses, and horsetail while on the other hand, Seed-bearing plants are divided into gymnosperms and angiosperms. Different plants have different characteristics and features so on the basis of these characteristics we can easily classify seeds whether they belong from angiosperm and gymnosperm.
So we can conclude that characteristics help us to classify seeds because different plants have different features.
Learn more about seeds here: brainly.com/question/18799172
#SPJ1
Answer:
9) This is a case of deceleration
10)-0.8 ms-2
b) acceleration is the change in velocity with time
11)
a) 100 ms-1
b) 100 seconds
12) 10ms-1
13) more information is needed to answer the question
14) - 0.4 ms^-2
15) 0.8 ms^-2
Explanation:
The deceleration is;
v-u/t
v= final velocity
u= initial velocity
t= time taken
20-60/50 =- 40/50= -0.8 ms-2
11)
Since it starts from rest, u=0 hence
v= u + at
v= 10 ×10
v= 100 ms-1
b)
v= u + at but u=0
1000 = 10 t
t= 1000/10
t= 100 seconds
12) since the sprinter must have started from rest, u= 0
v= u + at
v= 5 × 2
v= 10ms-1
14)
v- u/t
10 - 20/ 25
10/25
=- 0.4 ms^-2
15)
a=v-u/t
From rest, u=0
8 - 0/10
a= 8/10
a= 0.8 ms^-2
Note: I'm not sure what do you mean by "weight 0.05 kg/L". I assume it means the mass per unit of length, so it should be "0.05 kg/m".
Solution:
The fundamental frequency in a standing wave is given by

where L is the length of the string, T the tension and m its mass. If we plug the data of the problem into the equation, we find

The wavelength of the standing wave is instead twice the length of the string:

So the speed of the wave is

And the time the pulse takes to reach the shop is the distance covered divided by the speed:
Answer:
The mantle exists above the crust of the earth