1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mote1985 [20]
3 years ago
5

A dolphin in an aquatic show jumps straight up out of the water at a velocity of 15.0 m/s. (a) List the knowns in this problem.

(b) How high does his body rise above the water? To solve this part, first note that the final velocity is now a known, and identify its value. Then, identify the unknown and discuss how you chose the appropriate equation to solve for it. After choosing the equation, show your steps in solving for the unknown, checking units, and discuss whether the answer is reasonable. (c) How long a time is the dolphin in the air? Neglect any effects resulting from his size or orientation.
Physics
1 answer:
astra-53 [7]3 years ago
5 0

Answer:

a)

Y0 = 0 m

Vy0 = 15 m/s

ay = -9.81 m/s^2

b) 7.71 m

c) 3.06 s

Explanation:

The knowns are that the initial vertical speed (at t = 0 s) is 15 m/s upwards. Also at that time the dolphin is coming out of the water, so its initial position is 0 m. And since we can safely assume this happens in Earth, the acceleration is the acceleration of gravity, which is 9.81 m/s^2 pointing downwards

Y(0) = 0 m

Vy(0) = 15 m/s

ay = -9.81 m/s^2 (negative because it points down)

Since acceleration is constant we can use the equation for uniformly accelerated movement:

Y(t) = Y0 + Vy0 * t + 1/2 * a * t^2

To find the highest point we do the first time derivative (this is the speed:

V(t) = Vy0 + a * t

We equate this to zero

0 = Vy0 + a * t

0 = 15 - 9.81 * t

15 = 9.81 * t

t = 0.654 s

At this time it will have a height of:

Y(0.654) = 0 + 15 * 0.654 - 1/2 * 9.81 * 0.654^2 = 7.71 m

The doplhin jumps and falls back into the water, when it falls again it position will be 0 again. So we can equate the position to zero to find how long it was in the air knowing that it started the jump at t = 0s.

0 = Y0 + Vy0 * t + 1/2 * a * t^2

0 = 0 + 15 * t - 1/2 * 9.81 t^2

0 = 15 * t - 4.9 * t^2

0 = t * (15 - 4.9 * t)

t1 = 0 This is the moment it jumped into the air

0 = 15 - 4.9 * t2

15 = 4.9 * t2

t2 = 3.06 s This is the moment when it falls again.

3.06 - 0 = 3.06 s

You might be interested in
A car goes East from 2 m/s to 16m/s in 3.5s. What is the Car's acceleration?
BaLLatris [955]
A=v1+v2 / t
2+16/3.5=?
8 0
3 years ago
Please awnser and show the ways​
topjm [15]

Answer:

Answers in solutions.

Explanation:

<u>Question 6:</u>

The density of gold is 19.3 g/cm³

The density of silver is 10.5 g/cm³

  • The density of the substance in Crown A;

Density = mass ÷ volume = \frac{1930}{100} = 19.3 g/cm³

Since the density of gold, given, is 19.3 g/cm³ and the density of the substance in Crown A has a density of 19.3 g/cm³ , then that substance must be gold.

  • The density of the substance in Crown B;

Density = mass ÷ volume = 1930 ÷ 184 = 10.48913043  g/cm³ ≈ 10.5 g/cm³  (answer rounded up to one decimal place)

Since the density of the substance in Crown B is approximately equal to 10.5 g/cm³ , then that substance is Silver.

  • The density of substance in Crown C;

Density = mass ÷ volume = 1930g ÷ 150cm³ = 12.86666667 ≈ 12.9 cm³ (answer rounded up to one decimal place)

<h3><u>The density of the mixture:</u></h3><h3 />

For 2 cm³ of the mixture, its mass equal 19.3 g + 10.5 g = 29.8 g

∴ for 1 cm³ of the mixture, its mass equal to \frac{29.8}{2} = 14.9 g

Hence the density of the mixture = 14.9 g/cm³ and is not equal to the density of the substance in Crown C.

* Crown C is not made up of a mixture of gold and silver.

<u>Question 7:</u>

<u />

  • An empty masuring cylinder has a mass of 500 g.
  • Water is poured into measuring cylinder until the liquid level is at the 100 cm³ mark.
  • The total mass is now 850 g

The mass of water that occupied the 100 cm³ space of the container = total mass - mass of the empty container = 850 g - 500 g = 350 g

Density of the liquid (water) poured into the container = mass ÷  volume = 350 g ÷ 100 cm³ = 3.5g/cm³

<u>Question 8:</u>

<u />

A tank filled with water has a volume of 0.02 m³

(a) 1 liter = 0.001 m³

How many liters? = 0.02 m³ ?

Cross multiplying gives:

\frac{0.02 * 1}{0.001} =  20 liters

(b) 1 m³ = 1,000,000 cm³

0.02 m³ = how many cm³ ?

Cross-multiplying gives;

\frac{0.02 * 1,000,000}{1} = 20,000 cm³

(c) 1 cm³ = 1 ml

∴ 0.02 m³ of the water = 20,000 cm³ = 20,000 ml

<u>Question 9:</u>

<u />

Caliper (a) measurement = 3.2 cm

Caliper (b) measurement = 3 cm

<u>Question 10:</u>

<u />

  • A stone is gently and completely immersed in a liquid of density 1.0 g/cm³
  • in a displacement can
  • The mass of liquid which overflow is 20 g

The mass of the liquid which overflow = mass of the stone = 20 g

1 gram of the liquid occupies 1 cm³ of space.

20 g of the liquid will occupy; \frac{20 * 1}{1} = 20 cm³

(a) Since the volume of the water displaced is equal to the volume of the stone.

∴ The volume of the stone = 20 cm³

(b) Mass = density ×  volume

Density of the stone = 5.0 g/cm³

Volume of the stone = 20 cm³

Mass of the stone = 5 g/cm³ × 20 cm³ = 100 g

7 0
3 years ago
Does anyone know the answer to all of these questions
Rasek [7]

Answer:

i don't understand the hw

5 0
3 years ago
A water balloon is thrown horizontally from a tower that is 45 m high. It strikes the shoes of an unsuspecting passerby who is 4
LekaFEV [45]

Answer:

14.85 m/s

Explanation:

From the question given above, the following data were obtained:

Height (h) of tower = 45 m

Horizontal distance (s) moved by the balloon = 45 m

Horizontal velocity (u) =?

Next, we shall determine the time taken for the balloon to hit the shoe of the passerby. This is illustrated below:

Height (h) of tower = 45 m

Acceleration due to gravity (g) = 9.8 m/s²

Time (t) =?

h = ½gt²

45 = ½ × 9.8 × t²

45 = 4.8 × t²

Divide both side by 4.9

t² = 45/4.9

Take the square root of both side

t = √(45/4.9)

t = 3.03 s

Finally, we shall determine the magnitude of the horizontal velocity of the balloon as shown below:

Horizontal distance (s) moved by the balloon = 45 m

Time (t) = 3.03 s

Horizontal velocity (u) =?

s = ut

45 = u × 3.03

Divide both side by 3.03

u = 45/3.03

u = 14.85 m/s

Thus, the magnitude of the horizontal velocity of the balloon was 14.85 m/s

4 0
3 years ago
Only 5 questions plz answer.
Masja [62]
Question 18: a
question 19: b
question 20: c
6 0
3 years ago
Read 2 more answers
Other questions:
  • 6. The table shows the first five energy levels for mercury. A mercury atom makes a transition that emits a photon with a freque
    13·1 answer
  • The two types of plains are coastal plains and lowland planis <br><br>T<br>Or<br>F
    9·2 answers
  • Why are some rocks smooth and others rough?
    8·1 answer
  • Any value giving up from the best alternative is called​
    8·1 answer
  • Which of the following is a common ground water contaminant
    13·1 answer
  • What is the charge on a hypothetical ion with 35 protons and 33 electrons?
    11·1 answer
  • Calculate the kinetic energy of a 5.0kg object moving at 4.0 m/s
    13·1 answer
  • What law of motion does this picture represent?​
    6·2 answers
  • Which season is signaled by average lower temperature and indirect, angled sunlight?
    12·1 answer
  • What is the primary way the metamorphic rock formed
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!