1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mote1985 [20]
3 years ago
5

A dolphin in an aquatic show jumps straight up out of the water at a velocity of 15.0 m/s. (a) List the knowns in this problem.

(b) How high does his body rise above the water? To solve this part, first note that the final velocity is now a known, and identify its value. Then, identify the unknown and discuss how you chose the appropriate equation to solve for it. After choosing the equation, show your steps in solving for the unknown, checking units, and discuss whether the answer is reasonable. (c) How long a time is the dolphin in the air? Neglect any effects resulting from his size or orientation.
Physics
1 answer:
astra-53 [7]3 years ago
5 0

Answer:

a)

Y0 = 0 m

Vy0 = 15 m/s

ay = -9.81 m/s^2

b) 7.71 m

c) 3.06 s

Explanation:

The knowns are that the initial vertical speed (at t = 0 s) is 15 m/s upwards. Also at that time the dolphin is coming out of the water, so its initial position is 0 m. And since we can safely assume this happens in Earth, the acceleration is the acceleration of gravity, which is 9.81 m/s^2 pointing downwards

Y(0) = 0 m

Vy(0) = 15 m/s

ay = -9.81 m/s^2 (negative because it points down)

Since acceleration is constant we can use the equation for uniformly accelerated movement:

Y(t) = Y0 + Vy0 * t + 1/2 * a * t^2

To find the highest point we do the first time derivative (this is the speed:

V(t) = Vy0 + a * t

We equate this to zero

0 = Vy0 + a * t

0 = 15 - 9.81 * t

15 = 9.81 * t

t = 0.654 s

At this time it will have a height of:

Y(0.654) = 0 + 15 * 0.654 - 1/2 * 9.81 * 0.654^2 = 7.71 m

The doplhin jumps and falls back into the water, when it falls again it position will be 0 again. So we can equate the position to zero to find how long it was in the air knowing that it started the jump at t = 0s.

0 = Y0 + Vy0 * t + 1/2 * a * t^2

0 = 0 + 15 * t - 1/2 * 9.81 t^2

0 = 15 * t - 4.9 * t^2

0 = t * (15 - 4.9 * t)

t1 = 0 This is the moment it jumped into the air

0 = 15 - 4.9 * t2

15 = 4.9 * t2

t2 = 3.06 s This is the moment when it falls again.

3.06 - 0 = 3.06 s

You might be interested in
A runner traveling with an initial velocity of 1.1 m/s accelerates at a constant rate of 0.8 m/s2fora time of 2.0 s.(a).What is
pychu [463]

Answer:

The final velocity of the runner at the end of the given time is 2.7 m/s.

Explanation:

Given;

initial velocity of the runner, u = 1.1 m/s

constant acceleration, a = 0.8 m/s²

time of motion, t = 2.0 s

The velocity of the runner at the end of the given time is calculate as;

v = u + at

where;

v is the final velocity of the runner at the end of the given time;

v = 1.1 + (0.8)(2)

v = 2.7 m/s

Therefore, the final velocity of the runner at the end of the given time is 2.7 m/s.

7 0
2 years ago
11. Velocity-time graph for the motion of an object in a straight path is a straight line parallel to the time axis
Vilka [71]

a) uniform velocity

b) zero or no acceleration

c) (see picture)

EXPLANATION:

(see picture)

8 0
2 years ago
How is the environment affected by too low or too high high pH
MA_775_DIABLO [31]
Because pH can unballence the are it is not good for are health

4 0
3 years ago
How dose the hypothesis and observations connect
gavmur [86]

Answer:

<em>In the observational method, the hypothesis is constructed to explain the observations. A simple one may be a generalization of the observations. A more complex hypothesis may postulate a relationship between the events, and may even be used to predict other observations.</em>

7 0
2 years ago
HELP PLEASE !! how are waves, engery, and matter related??
Makovka662 [10]

Waves transport energy along a medium without transporting matter. The amount of energy carried by a wave is related to the amplitude of the wave. Thus, the higher the wave is from the resting line, the more energy is put in and vice-versa.

7 0
3 years ago
Other questions:
  • A red car of mass m is heading north (direction 0°). It collides at an intersection with a yellow car of mass 1.3m heading east
    11·1 answer
  • How many number of musicians constitute a big band?
    5·1 answer
  • Water is pouring into an inverted cone at the rate of 3.14 cubic meters per minute. The height of the cone is 10 meters and the
    10·1 answer
  • Steam types of<br> forces in<br> nature
    8·1 answer
  • A magnet that is dropped may lose its ______.​
    9·1 answer
  • Use the drop-down menus to complete the passage. A galvanometer detects by showing needle movement in . If the wires in this gal
    6·2 answers
  • a train starts from rest and accelerates uniformly until it has traveled 2.1 km and acquired a forward velocity of 24 m/s.
    11·1 answer
  • In a physics lab, Asha is given a 10.7 kg uniform rectangular plate with edge lengths 67.3 cm by 53.5 cm . Her lab instructor re
    11·1 answer
  • I need to choose a theme for my physics assignment My experiment is finding g
    8·1 answer
  • Which best describes what occurs when an object takes in a wave as the wave hits it?.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!