When two things rub against each other and become charged, it is
electrons that been rubbed off of one thing and on to the other one.
Protons would do that too if they got moved from one thing to another
by rubbing, but they don't.
The Inertia is 22. 488 kg. m² and the speed just before it hits the ground is 6. 4 m/s
<h3>
How to determine the inertia</h3>
Using the formula:
I = 1/2 M₁R₁² + 1/2 M₂R₂²
Where I = Inertia
I = 1/2 * 0.810* (2. 60)² + 1/2 * 1. 58 * (5)²
I = 1/2 * 5. 476 + 1/2 * 39. 5
I = 2. 738 + 19. 75
I = 22. 488 kg. m²
To determine the block's speed, use the formula
v = 
v = 
v = 
v = 6. 4 m/s
Therefore, the Inertia is 22. 488 kg. m² and the speed just before it hits the ground is 6. 4 m/s
Learn more about law of inertia here:
brainly.com/question/10454047
#SPJ1
Fire extinguishers are typically red. Goes along with the red fire trucks and red being a color of emergency. While there isn't any standard, if we decided to change the colors of the fire extinguisher, people would be very confused and given the context, it could cost people's lives, so I'm thinking red will be the color of fire extinguishers for a while to come.
<span />
The turns ratio is equal to the voltage ratio. Let n1 and n2 be the primary and secondary turns. Then
5850V/120V=n1/n2
48.75=2680/n2
n2=2680/48.75
n2=55
F = 130 revs/min = 130/60 revs/s = 13/6 revs/s
t = 31s
wi = 2πf = 2π × 13/6 = 13π/3 rads/s
wf = 0 rads/s = wi + at
a = -wi/t = -13π/3 × 1/31 = -13π/93 rads/s²
wf² - wi² = 2a∅
-169π²/9 rads²/s² = 2 × -13π/93 rads/s² × ∅
∅ = 1209π/18 rads
n = ∅/2π = (1209π/18)/(2π) = 1209/36 ≈ 33.5833 revolutions.