He spends 30 to enter and 4 per ride
y = 4x + 30....with x being the number of rides and y being the total cost
Answer:
i think 80/3
Step-by-step explanation:
Answer:
c. m∠1 + m∠6 = m∠4 + m∠6
Step-by-step explanation:
Given: The lines l and m are parallel lines.
The parallel lines cut two transverse lines. Here we can use the properties of transverse and find the incorrect statements.
a. m∠1 + m∠2 = m∠3 + m∠4
Here m∠1 and m∠2 are supplementary angles add upto 180 degrees.
m∠3 and m∠4 are supplementary angles add upto 180 degrees.
Therefore, the statement is true.
b. m∠1 + m∠5 = m∠3 + m∠4
m∠1 + m∠5 = 180 same side of the adjacent angles.
m∠3 + m∠4 = 180, supplementary angles add upto 180 degrees.
Therefore, the statement is true.
Now let's check c.
m∠1 + m∠6 = m∠4 + m∠6
We can cancel out m∠6, we get
m∠1 = m∠4 which is not true
Now let's check d.
m∠3 + m∠4 = m∠7 + m∠4
We can cancel out m∠4, we get
m∠3 = m∠7, alternative interior angles are equal.
It is true.
Therefore, answer is c. m∠1 + m∠6 = m∠4 + m∠6
To check whether a function is odd or even, we simply substitute the argument by its negative version, namely "x" by "-x".
if the expression simplifies to resemble the original expression, that simply means the expression is
even. If it resembles the original negative expression, is
odd.

well, that doesn't look like the original
- 2x³ - 9, so is not
even.
and -f(x) would be
2x³ + 9, and that doesn't look like either, so is not
odd.
thus is neither.
Answer:
See below.
Step-by-step explanation:
ABC is an isosceles triangle with BA = BC.
That makes angles A and C congruent.
ABD is an isosceles triangle with AB = AD.
That makes angles ABD and ADB congruent.
Since m<ABD = 72 deg, then m<ADB = 72 deg.
Angles ADB and CDB are a linear pair which makes them supplementary.
m<ADB + m<BDC = 180 deg
72 deg + m<BDC = 180 deg
m<CDB = 108 deg
In triangle ABD, the sum of the measures of the angles is 180 deg.
m<A + m<ADB + m<ABD = 180 deg
m<A + 72 deg + 72 deg = 180 deg
m<A = 36 deg
m<C = 36 deg
In triangle BCD, the sum of the measures of the angles is 180 deg.
m<CBD + m<C + m<BDC = 180 deg
m<CBD + 36 deg + 108 deg = 180 deg
m<CBD = 36 deg
In triangle CBD, angles C and CBD measure 36 deg making them congruent.
Opposite sides DB and DC are congruent making triangle BCD isosceles.