
Actually Welcome to the concept of Ions .
If we see the reaction.
H2SO4 ==> 2H+ + (SO4)2-
Here you can see, H+ ( Hydrogen ions) and (SO4) 2- ( sulphate ions) are the ions when the H2SO4 is dissolved in water.
wherears one hydrogen atom has a mass of approximately 1 u ,1 mol of h atoms has a mass of approximately 1 gram and wherears one sodium atom has an approximately 1 gram and one sodium atom have approximate mass of 23 u
Answer:
Mass of water = 73.08 g
Explanation:
Given data:
Mass of hydrogen = 35 g
Mass of oxygen = 65 g
Mass of water = ?
Solution:
First of all we will write the balanced chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of hydrogen = mass/ molar mass
Number of moles of hydrogen = 35 g/ 2 g/mol
Number of moles of hydrogen = 17.5 mol
Number of moles of oxygen = 65 g / 32 g/mol
Number of moles of oxygen = 2.03 moles
Now we compare the moles of water with moles hydrogen and oxygen.
H₂ : H₂O
2 : 2
17.5 : 17.5
O₂ : H₂O
1 : 2
2.03 : 2× 2.03 =4.06 mol
Number of moles of water produced by oxygen are less so oxygen is limitting reactant.
Mass of water:
Mass of water = number of moles × molar mass
Mass of water = 4.06 mol × 18 g/mol
Mass of water = 73.08 g
Answer:
See explanation
Explanation:
In Bohr's theory, electrons are found in specific regions in space called orbits. These orbits are also called energy levels. An electron may move from one energy level to another by absorbing or emitting energy.
In the wave mechanical model, electrons are not found in a particular region in space according to Heisenberg's uncertainty principle.
We rather define a certain region in space where there is a high probability of locating the electron. This region in space where there is a high probability of locating the electron is called an orbital.
Hence, in the Bohr's model of the atom,electrons can surely be found in orbits while in the wave mechanical model, the orbital is a probability function that describes a region in space where an electron may be found.