In a phase diagram, the point at which the solid, liquid, and gas coexist simultaneously is called the TRIPLE POINT. There is a specified pressure and temperature at which the substance can exist in equilibrium with these three phases being present.
84.24 g of water (H₂O)
Explanation:
We have the following chemical reaction:
2 H₂O → 2 H₂ + O₂
Now we calculate the number of moles of products.
number of moles = mass / molar weight
number of moles of H₂ = 50 / 2 = 25 moles
number of moles of O₂ = 75 / 32 = 2.34 moles
We see from the chemical reaction that for every 2 moles of H₂ produced there are 1 mole of O₂ produces for every 25 moles of H₂ produced there are 12.5 moles of O₂ but we only have 2.35 moles of O₂ available. The O₂ will be the limiting quantity from which we devise the following reasoning:
if 2 moles of H₂O produces 1 mole of O₂
then X moles of H₂O produces 2.34 mole of O₂
X = (2 × 2.34) / 1 = 4.68 moles of H₂O
mass = number of moles × molar weight
mass of H₂O = 4.68 × 18 = 84.24 g
Learn more about:
limiting reactant
brainly.com/question/7144022
brainly.com/question/6820284
brainly.com/question/14108423
#learnwithBrainly
The rate of a chemical reaction is the speed with which the reactants are converted to products while the collision theory is used to explain why chemical reactions occur at different rates. It states that for a reaction to proceed, the reactants particles must collide and the more successful collisions there are per unit of time, the faster the reaction will be. As the reaction progresses, the products builds up in the system and the chance that the reactants will collide amongst themselves reduces as the product molecules begin to build up while the molecules of the reactants are deprived. therefore the rate of reaction changes.
Answer:
1 mole of platinum
Explanation:
To obtain the number of mole(s) of platinum present, we need to determine the empirical formula for the compound.
The empirical formula for the compound can be obtained as follow:
Platinum (Pt) = 117.4 g
Carbon (C) = 28.91 g
Nitrogen (N) = 33.71 g
Divide by their molar mass
Pt = 117.4 / 195 = 0.602
C = 28.91 / 12 = 2.409
N = 33.71 / 14 = 2.408
Divide by the smallest
Pt = 0.602 / 0.602 = 1
C = 2.409 / 0.602 = 4
N = 2.408 / 0.602 = 4
The empirical formula for the compound is PtC₄N₄ => Pt(CN)₄
From the formula of the compound (i.e Pt(CN)₄), we can see clearly that the compound contains 1 mole of platinum.
Answer:
a) +640 kJ/mol or +1.06x10⁻¹⁸ J
b) +276 kJ/mol
Explanation:
To dissociate the molecule, the bond must be broken, thus, it's necessary energy equal to the energy of the bond, which can be calculated by:
E = (Q1*Q2)/(4*π*ε*r)
Where Q is the charge of the ions, ε is a constant (8.854x10⁻¹²C²J ⁻¹ m⁻¹), and r is the bond length. Each one of the ions has a charge equal to 1. The elementary charge is 1.602x10⁻¹⁹C, which will be the charge of them.
1 mol has 6.022x10²³ molecules (Avogadros' number), so the energy of 1 mol is the energy of 1 molecule multiplied by it:
E = 6.022x10²³ *(1.602x10⁻¹⁹)²/(4π*8.854x10⁻¹²*2.17x10⁻¹⁰)
E = +640113 J/mol
E = +640 kJ/mol
Or at 1 molecule: E =640/6.022x10²³ = +1.06x10⁻²¹ kJ = +1.06x10⁻¹⁸ J
b) The energy variation to dissociate the molecule at its neutral atoms is the energy of dissociation less the difference of the ionization energy of K and the electron affinity of F (EA):
498 = 640 - (418 - EA)
640 -418 + EA = 498
222 + EA = 498
EA = +276 kJ/mol