1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tema [17]
3 years ago
12

Can we use electrical equipment near water? Explain Why?

Chemistry
1 answer:
tiny-mole [99]3 years ago
5 0

Answer:

You may, but it is too risky.

Even though you are being cautious around using electric equipment around water, you'll never know what can happen. You might accidentally drop that piece of electrical equipment you are using into the water. Water can be splashed around by someone or something without you noticing it and it may affect the object you are using. Sometimes, if water comes in contact with an electrical object, it may cause you electric shocks or the equipment you are using has a chance of exploding and may hurt you. You can guarantee that waterproof electrical equipment is safe to use, but it is better not to risk it too much.

You might be interested in
A cube of aluminum (density = 2.70 g/ml) has a mass of 17.2 g. what is the edge length of the cube?
Helen [10]
<span>The formula for mass, which is mass = density x volume, can be rewritten as volume = mass/density. We can deduce the volume of the cube as the mass and density are given: 17.2g/2.7g/ml = 6.37ml. Now that the volume of the cube is known, we can deduce the edge length. Volume = length x width x height, so 6.37 = X^3. We then take the cube root of 6.37 to discover the value of x, which will be the edge length of the cube. The edge length of the cube is 1.85 cm.</span>
8 0
3 years ago
Which one is the answer?
nadya68 [22]
I would go with C because that seems like the best answer choice
3 0
3 years ago
Is silicone malleable or brittle
ANTONII [103]

Answer:

Luster: Silicon for example appears lustrous, but is not malleable or ductile (it is brittle - a characteristic of some nonmetals). It is a much poorer conductor of heat and electricity than the metals.8 May 2021

Elements: Oxygen; Carbon

Explanation:

hope it helps

4 0
3 years ago
If you are trying to pipet an unknown liquid with a pipetman and the liquid keeps running out of the tip before you can transfer
irina1246 [14]

Answer:

This is due to the physical properties of the sample, since it affects the volume dispensed.

Explanation:

For example, in the case of very dense samples, selected samples to adhere to the surface of the tip, dispensing more slowly. In contrast, ethanol samples are less viscous and more volatile and are dispensed more rapidly. Some of the ways to minimize these inconveniences are the use of ultra low retention pipette tips, since they have a hydrophobic plastic additive that prevents the liquid from adhering to the inside of the tip.

Another way is to use the reverse pipetting.

6 0
4 years ago
Consider the titration of a 20.0-mL sample of 0.105 M HC2H3O2 with 0.125 M NaOH. Determine each quantity. a. the initial pH b. t
Oksi-84 [34.3K]

Answer:

Explanation:

Given that:

Concentration of HC_2H_3O_2 \  (M_1) = 0.105 M

Volume of  HC_2H_3O_2 \  (V_1) = 20.0 mL

Concentration of NaOH (M_2) = 0.125 M

The  chemical reaction can be expressed as:

HC_2H_3O_2_{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O_{(l)}

Using the ICE Table to determine the equilibrium concentrations.

          HC_2 H_3 O_2 _{(aq)} + H_2O _{(l) } \to C_2 H_3O_2^- _{(aq)} + H_3O^+_{ (aq)}

I            0.105                                     0                  0

C              -x                                         +x                +x

E            0.105 - x                                  x                  x

K_a = \dfrac{[C_2H_5O^-_2][H_3O^+]}{[HC_2H_3O_2]}

K_a = \dfrac{(x)(x)}{(0.105-x)}

Recall that the ka for HC_2H_3O_2= 1.8 \times 10^{-5}

Then;

1.8 \times 10^{-5} = \dfrac{(x)(x)}{(0.105 -x)}

1.8 \times 10^{-5} = \dfrac{x^2}{(0.105 -x)}

By solving the above mathematical expression;

x = 0.00137 M

H_3O^+ = x = 0.00137  \ M \\ \\  pH = - log [H_3O^+]  \\ \\  pH = - log ( 0.00137 )

pH = 2.86

Hence, the initial pH = 2.86

b)  To determine the volume of the added base needed to reach the equivalence point by using the formula:

M_1 V_1 = M_2 V_2

V_2= \dfrac{M_1V_1}{M_2}

V_2= \dfrac{0.105 \ M \times 20.0 \ mL }{0.125 \ M}

V_2 = 16.8 mL

Thus, the volume of the added base needed to reach the equivalence point = 16.8 mL

c) when pH of 5.0 mL of the base is added.

The Initial moles of HC_2H_3O_2 = molarity × volume

= 0.105  \ M \times 20.0 \times 10^{-3} \ L

= 2.1 \times 10^{-3}

number of moles of 5.0 NaOH = molarity × volume

number of moles of 5.0 NaOH = 0.625 \times 10^{-3}

After reacting with 5.0 mL NaOH, the number of moles is as follows:

                    HC_2 H_3 O_2 _{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O{ (l)}

Initial moles   2.1*10^{-3}       0.625 * 10^{-3}           0                      0

F(moles) (2.1*10^{-3} - 0.625 \times 10^{-3})    0      0.625 \times 10^{-3}         0.625 \times 10^{-3}

The pH of the solution is then calculated as follows:

pH = pKa + log \dfrac{[base]} {[acid]}

Recall that:

pKa for HC_2H_3O_2=4.74

Then; we replace the concentration with the number of moles since the volume of acid and base are equal

∴

pH = 4.74 + log \dfrac{0.625 \times 10^{-3}}{1.475 \times 10^{-3}}

pH = 4.37

Thus, the pH of the solution after the addition of 5.0 mL of NaOH = 4.37

d)

We need to understand that the pH at 1/2 of the equivalence point is equal to the concentration of the base and the acid.

Therefore;

pH = pKa = 4.74

e) pH at the equivalence point.

Here, the pH of the solution is the result of the reaction in the (C_2H_3O^-_2) with H_2O

The total volume(V) of the solution = V(acid) + V(of the base added to reach equivalence point)

The total volume(V) of the solution = 20.0 mL + 16.8 mL

The total volume(V) of the solution = 36.8 mL

Concentration of (C_2H_3O^-_2) = moles/volume

= \dfrac{2.1 \times 10^{-3} \ moles}{0.0368 \ L}

= 0.0571 M

Now, using the ICE table to determine the concentration of H_3O^+;

             C_2H_5O^-_2 _{(aq)} + H_2O_{(l)} \to HC_2H_3O_2_{(aq)} + OH^-_{(aq)}

I              0.0571                                0                      0

C              -x                                       +x                     +x

E             0.0571 - x                             x                       x

Recall that the Ka for HC_2H_3O_2 = 1.8 \times 10^{-5}

K_b = \dfrac{K_w}{K_a} = \dfrac{1.0\times 10^{-14}}{1.8 \times 10^{-5} }  \\ \\ K_b = 5.6 \times 10^{-10}

k_b = \dfrac{[ HC_2H_3O_2] [OH^-]}{[C_2H_3O^-_2]}

5.6 \times 10^{-10} = \dfrac{x *x }{0.0571 -x}

x = [OH^-] = 5.6 \times 10^{-6} \ M

[H_3O^+] = \dfrac{1.0 \times 10^{-14} }{5.6 \times 10^{-6} }

[H_3O^+] =1.77 \times 10^{-9}

pH =-log  [H_3O^+]   \\ \\  pH =-log (1.77 \times 10^{-9}) \\ \\ \mathbf{pH = 8.75 }

Hence, the pH of the solution at equivalence point = 8.75

f) The pH after 5.09 mL base is added beyond (E) point.

             HC_2 H_3 O_2 _{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O{ (l)}

Before                             0.0021              0.002725         0

After                                   0                     0.000625        0.0021

[OH^-] = \dfrac{0.000625 \ moles}{(0.02 + 0.0218 )  \ L}

[OH^-] = \dfrac{0.000625 \ moles}{0.0418 \ L}

[OH^-] =  0.0149 \ M

From above; we can determine the concentration of H_3O^+ by using the following method:

[H_3O^+] = \dfrac{1.0 \times 10^{-14} }{0.0149}

[H_3O^+] = 6.7 \times 10^{-13}

pH = - log [H_3O^+]

pH = -log (6.7 \times 10^{-13} )

pH = 12.17

Finally, the pH of the solution after adding 5.0 mL of NaOH beyond (E) point = 12.17

3 0
3 years ago
Other questions:
  • Calculate the amount of heat needed to boil 120.g of acetic acid (HCH3CO2), beginning from a temperature of 16.7°C.
    9·1 answer
  • Consider the reaction: A &lt;=&gt; B. Under standard conditions at equiliubrium, the concentrations of the compounds are [A] = 1
    14·2 answers
  • Which of the elements Magnesium, Calcium, Serum, Barium, looses electron readily​
    6·1 answer
  • Which graph above best represents the relationship between the volume and the pressure of a gas?​
    6·1 answer
  • calculate the number of moles of nitrogen gas present in 400cm3 sample of it a pressure of 790 mmHg and 27°C.​
    8·1 answer
  • How much heat must be absorbed by 375 grams of water to raise its temperature by 25 degrees Celsius? Specific heat for water= 4.
    15·2 answers
  • What happens when an ice cube melts in a glass of water?
    11·1 answer
  • Which phrase best describes the salinity of ocean water?
    12·1 answer
  • When 2.5 g of blue copper(ii) sulfate crystals were heated, 1.6 g of a white solid were left in tube A
    5·1 answer
  • Sucrose is very soluble in water. At 25◦C,
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!