Ans: 15.1 grams
Given reaction:
Na2CO3 + Ca(OH)2 → 2NaOH + CaCO3
Mass of Na2CO3 = 20.0 g
Molar mass of Na2CO3 = 105.985 g/mol
# moles of Na2CO3 = 20/105.985 = 0.1887 moles
Based on the reaction stoichiometry: 1 mole of Na2CO3 produces 2 moles of NaOH
# moles of NaOH produced = 0.1887*2 = 0.3774 moles
Molar mass of NaOH = 22.989 + 15.999 + 1.008 = 39.996 g/mol
Mass of NaOH produced = 0.3774*39.996 = 15.09 grams
Answer:
Explanation:
Hello.
In this case, taking into account that HCl has one molecule of hydrogen per mole of compound which weights 36.45 g/mol, we compute the number of molecules of hydrogen in hydrochloric acid by considering the given mass and the Avogadro's number:
Now, from the 180 g of water, we see two hydrogen molecules per molecule of water, thus, by also using the Avogadro's number we compute the molecules of hydrogen in water:
Thus, the total number of molecules turns out:
Regards.
Xylene moles =\frac{17.12}{106.16×1000}=0.00016moles=
106.16×1000
17.12
=0.00016moles
Moles of CO_2 =\frac{56.77}{44.01×1000}=0.0013CO
2
=
44.01×1000
56.77
=0.0013
Moles of H_2O= =\frac{14.53}{18.02×1000}=0.0008H
2
O==
18.02×1000
14.53
=0.0008
Moles ratios
\frac{0.0013}{0.0008}=1.625
0.0008
0.0013
=1.625
\frac{0.0008}{0.0008}=1
0.0008
0.0008
=1
Hence molecular fomula
The empirical formula is C 4H 5.
The molecular formula C8H10
Balanced chemical reaction:
MgSO₄(aq) + Sr(NO₃)₂(aq) → Mg(NO₃)₂(aq) + SrSO₄(s).
Ionic reaction:
Mg²⁺(aq) + SO₄²⁻(aq) + Sr²⁺(aq) + 2NO₃⁻(aq) → Mg²⁺(aq) + 2NO₃⁻(aq) + SrSO₄(s).
Net ionic reaction:
Sr²⁺(aq) + SO₄²⁻(aq) → SrSO₄(s).
Magnesium sulfate (MgSO₄), strontium nitrate (Sr(NO₃)₂ and magnesium nitrate (Mg(NO₃)₂) are soluble in water. Strontium sulfate (SrSO₄) is not soluble in water.
This chemical reaction is double displacement reaction - cations and anions of the two reactants switch places and form two new compounds.