Answer: if it is simply then the answer is 3x^3+14x^2-17x+14
Step-by-step explanation:
Answer:
Step-by-step explanation:
4 and a half
Let h represent the height of the trapezoid, the perpendicular distance between AB and DC. Then the area of the trapezoid is
Area = (1/2)(AB + DC)·h
We are given a relationship between AB and DC, so we can write
Area = (1/2)(AB + AB/4)·h = (5/8)AB·h
The given dimensions let us determine the area of ∆BCE to be
Area ∆BCE = (1/2)(5 cm)(12 cm) = 30 cm²
The total area of the trapezoid is also the sum of the areas ...
Area = Area ∆BCE + Area ∆ABE + Area ∆DCE
Since AE = 1/3(AD), the perpendicular distance from E to AB will be h/3. The areas of the two smaller triangles can be computed as
Area ∆ABE = (1/2)(AB)·h/3 = (1/6)AB·h
Area ∆DCE = (1/2)(DC)·(2/3)h = (1/2)(AB/4)·(2/3)h = (1/12)AB·h
Putting all of the above into the equation for the total area of the trapezoid, we have
Area = (5/8)AB·h = 30 cm² + (1/6)AB·h + (1/12)AB·h
(5/8 -1/6 -1/12)AB·h = 30 cm²
AB·h = (30 cm²)/(3/8) = 80 cm²
Then the area of the trapezoid is
Area = (5/8)AB·h = (5/8)·80 cm² = 50 cm²
Like XZ divides the cord YV into two congruent parts (YW=5.27 cm=WV), this segment XZ must be perpendicular to the segment YV, then the angle XWY in triangle XWY is a right angle (90°) and the triangle XWY is a right angle.
We can apply the trigonometric ratios in triangle XWY:
Hypotenure: XY
sin 44°=(Opposite leg to 44°)/(hypothenuse)
sin 44°=YW/XY
sin 44°=(5.27 cm)/XY
Solving for XY. Cross multiplication:
sin44° XY=5.27 cm
Dividing both sides of the equation by sin 44°:
sin 44° XY / sin 44° = (5.27 cm)/sin 44°
XY=(5.27/sin 44°) cm
XY=(5.27/0.694658370) cm
XY=7.586462929 cm
This value XY is the radius of the circle, then:
XZ=XY→XZ=7.586462969 cm
tan 44°=(Opposite leg to 44°) / (Adjacent leg to 44°)
tan 44°=YW/XW
tan 44°=(5.27 cm)/XW
Solving for XW. Cross multiplication:
tan 44° XW=5.27 cm
Dividing both sides of the equation by tan 44°:
tan 44° XW / tan 44°=(5.27 cm)/tan 44°
XW=(5.27/tan 44°) cm
XW=(5.27/0.965688775) cm
XW=5.457244753 cm
WZ=XZ-XW
WZ=7.586462969 cm-5.457244753 cm
WZ=2.129218216 cm
Rounded to 2 decimal places:
WZ=2.13 cm
Answer: The <span>measurement is closest to the measure of segment WZ is
2.13 cm</span>