First the theoretical yield of Nabr
by use of mole ratio between FeBr3 and NaBr which is 2:6 the theoretical yield
=2.36 x6/2= 7.08 moles
the % yield = actual yield/ theoretical yield x 100
that is 6.14/7.08 x100= 86.72%
Molar mass H₂O = 18.0 g/mol
number of moles :
1.0 / 18.0 => 0.055 moles
1 mole -------------- 6.02 x 10²³ molecules
0.055 moles -------- ? molecules
molecules = 0.055 x ( 6.02 x 10²³) / 1
molecules = 3.311x10²² / 1
= 3.311 x 10²² molecules
hope this helps!
Electron affinity is defined as the change in energy (in kJ/mole) of a neutral atom (in the gaseous phase) when an electron is added to the atom to form a negative ion. In other words, the neutral atom's likelihood of gaining an electron.
Electron Affinity of Lithium is 59.6 kJ/mol.
Electron Affinity of Caesium is 45.5 kJ/mol.
Electron Affinity of Lithium is 59.6 kJ/mol. Electronegativity of Lithium is 0.98. ... Electron affinities are more difficult to measure than ionization energies. An atom of Lithium in the gas phase, for example, gives off energy when it gains an electron to form an ion of Lithium.
Trends
The ionization energy of the elements within a period generally increases from left to right. This is due to valence shell stability.
The ionization energy of the elements within a group generally decreases from top to bottom. This is due to electron shielding.
The noble gases possess very high ionisation energies because of their full valence shells as indicated in the graph. Note that helium has the highest ionization energy of all the elements.
Answer:
constant appearance
Explanation:
this mean that a pure substance will have a constant appearance ,colour,density ,melting point and boiling point
A amplitude = 0.50 m and wave-length = 1.0 m
B amplitude = 0.40 m and wave-length = 2.0 m
C amplitude = 0.60 m and wave-length = 2.0 m