The mass of carbon contained in 2.25 g of potassium carbonate, K₂CO₃ is 0.196 g.
<h3>
Molecular mass of potassium carbonate</h3>
The molecular mass of potassium carbonate, K₂CO₃ is calculated as follows;
M = K₂CO₃
M = (39 x 2) + (12) + (16 x 3)
M = 138 g
mass of carbon in potassium carbonate, K₂CO₃ is = 12 g
The mass of carbon contained in 2.25 g of potassium carbonate, K₂CO₃ is calculated as follows;
138 g ------------ 12 g of carbon
2.25 g ------------ ?
= (2.25 x 12) / 138
= 0.196 g
Thus, the mass of carbon contained in 2.25 g of potassium carbonate, K₂CO₃ is 0.196 g.
Learn more about potassium carbonate here: brainly.com/question/27514966
#SPJ1
Answer:
A. A scientist investigates a mouse's growth in nature by watching the animal.
A field study is a raw collection of data, typically in the natural habit of the organism; hence why an experiment taken in a lab isn't a field study.
Answer:
0.581 L or 581 mL
Explanation:
As stated in the question, the combined gas law is (P1*V1/T1) = (P2*V2/T2)
Write down the amounts you are given.
V1 = 0.152 L (I was taught to always convert milliliters to liters)
P1 = 717 mmHg
T1 = 315 K
V2 = ?
P2 = 463 mmHg
T2 = 777 K
The variable that is being solved for is final volume. Fill in the combined gas law equation with the corresponding amounts and solve for V2.
(717 mmHg*0.152 L) / (315 K) = (463 mmHg*V2) / (777 K)
0.346 = (463*V2) / (777)
0.346*777 = (463*V2) / (777)*777
268.842 = 463*V2
268.842/463 = (463*V2)/463
V2 = 0.581
Pressure and volume are indirectly proportional. This checks out because the volume increased while pressure decreased. Volume and temperature are directly proportional. This checks out because both volume and temperature increased. This is a good way to check your answers. You can also solve each side of the combined gas law equation to see if they are both the same.
Answer:
I am not 100% sure but I think it is 26.981538
Explanation: