we call it as well as 100 . so easey
Answer:
(a). Energy is 64,680 J
(b) velocity is 51.43m/s
(c) velocity in mph is 115.0mph
Explanation:
(a).
The potential energy
of the payload of mass
is at a vertical distance
is
.
Therefore, for the payload of mass
at a vertical distance of
, the potential energy is


(b).
When the payload reaches the bottom of the shaft, all of its potential energy is converted into its kinetic energy; therefore,




(c).
The velocity in mph is


Answer:
L = 41.09 Kg m2 / s The angular momentum does not depend on the time
Explanation:
The definition of angular momentum is
L = r x p
Where blacks indicate vectors
Let's apply this definition our case. Linear momentum
p = m v
Let's replace
L = m r x v
The given function is
x = 6.00 i ^ + 4.15 t j
^
We look for speed
v = dx / dt
v = 0 + 4.15 j ^
To evaluate the angular momentum one of the best ways is to use determinants
![L = m \left[\begin{array}{ccc}i&j&k\\6&4.15t&0\\0&4.15&0\end{array}\right]](https://tex.z-dn.net/?f=L%20%3D%20m%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C6%264.15t%260%5C%5C0%264.15%260%5Cend%7Barray%7D%5Cright%5D)
L = m 6 4.15 k ^
The other products give zero
Let's calculate
L = 1.65 6 4.15 k ^
L = 41.09 Kg m2 / s
The angular momentum does not depend on the time
The image is missing (however it's not necessary to solve the problem).
The correct answer is A) decreases, because the gravitational force is inversely proportional to the square of the distance. In fact, the magnitude of the gravitational force between two object of mass M and m, at a distance d one from each other, is

where G is the gravitational constant. As can be seen from the formula, if the distance d between the two object increases, the intensity of the force decreases.