I see the picture can you send it to me
Taking into accoun the STP conditions and the ideal gas law, the correct answer is option e. 63 grams of O₂ are present in 44.1 L of O2 at STP.
First of all, the STP conditions refer to the standard temperature and pressure, where the values used are: pressure at 1 atmosphere and temperature at 0°C. These values are reference values for gases.
On the other side, the pressure, P, the temperature, T, and the volume, V, of an ideal gas, are related by a simple formula called the ideal gas law:
P×V = n×R×T
where:
- P is the gas pressure.
- V is the volume that occupies.
- T is its temperature.
- R is the ideal gas constant. The universal constant of ideal gases R has the same value for all gaseous substances.
- n is the number of moles of the gas.
Then, in this case:
- P= 1 atm
- V= 44.1 L
- n= ?
- R= 0.082

- T= 0°C =273 K
Replacing in the expression for the ideal gas law:
1 atm× 44.1 L= n× 0.082
× 273 K
Solving:

n=1.97 moles
Being the molar mass of O₂, that is, the mass of one mole of the compound, 32 g/mole, the amount of mass that 1.97 moles contains can be calculated as:
= 63.04 g ≈ <u><em>63 g</em></u>
Finally, the correct answer is option e. 63 grams of O₂ are present in 44.1 L of O2 at STP.
Learn more about the ideal gas law:
Answer:
okay so to tell the story short:
Explanation:
over the years farmers in agriculture businesses have decide to use safer chemicals. because since people have been getting food poisoning and been getting sick. but now farmer businesses now use some chemicals that have very low toxicity. When pesticides were first introduced, farmers were using chemicals that were very toxic. but then that's when they realised that the they had to be removed from the application and today they have been replaced with better and healthier ones just like (glyphosate.)
B. it means the compound is dissolved in water