Answer
given,
height of Alpe d'Huez = 1100-m
time = 37.5 min
mass of the rider and his bike = 65 Kg
the metabolic power to ride = 700 W
U = m g y
U = 65 x 9.8 x 1100
U = 700700 J
since efficiency is 25%





b) 

P = 1245.68 W
Answer:
Explanation:
Answer:
Explanation:
Given that,
System of two particle
Ball A has mass
Ma = m
Ball A is moving to the right (positive x axis) with velocity of
Va = 2v •i
Ball B has a mass
Mb = 3m
Ball B is moving to left (negative x axis) with a velocity of
Vb = -v •i
Velocity of centre of mass Vcm?
Velocity of centre of mass can be calculated using
Vcm = 1/M ΣMi•Vi
Where M is sum of mass
M = M1 + M2 + M3 +...
Therefore,
Vcm=[1/(Ma + Mb)] × (Ma•Va +Mb•Vb
Rearranging for better understanding
Vcm = (Ma•Va + Mb•Vb) / ( Ma + Mb)
Vcm = (m•2v + 3m•-v) / (m + 3m)
Vcm = (2mv — 3mv) / 4m
Vcm = —mv / 4m
Vcm = —v / 4
Vcm = —¼V •i
joji sanctuary
slow dancing in the dark
happier by olivia
filipino artist like john cena
So based on your question where there is a block of mass m1= 8.8kg in the inclined plane with an angle of 41 with respect to the horizontal. To find the spring constant of the problem were their is a coefficients of friction of 0.39 and 0.429, you must use the formula K*x^2=m*a*sin(angle). By calculating the minimum spring constant is 220.66 N/m^2