Answer:
Final volume, V2 = 24.62 L
Explanation:
Given the following data;
Initial volume = 40 L
Initial pressure = 80 Pa
Final pressure = 130 Pa
To find the final volume V2, we would use Boyles' law.
Boyles states that when the temperature of an ideal gas is kept constant, the pressure of the gas is inversely proportional to the volume occupied by the gas.
Mathematically, Boyles law is given by;
Substituting into the equation, we have;




Final volume, V2 = 24.62 Liters
Answer:
630.75 j
Explanation:
from the question we have the following
total mass (m) = 54.5 kg
initial speed (Vi) = 1.4 m/s
final speed (Vf) = 6.6 m/s
frictional force (FF) = 41 N
height of slope (h) = 2.1 m
length of slope (d) = 12.4 m
acceleration due to gravity (g) = 9.8 m/s^2
work done (wd) = ?
- we can calculate the work done by the boy in pushing the chair using the law of law of conservation of energy
wd + mgh = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d)
wd = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d) - (mgh)
where wd = work done
m = mass
h = height
g = acceleration due to gravity
FF = frictional force
d = distance
Vf and Vi = final and initial velocity
wd = (0.5 x 54.5 x 6.9^2) - (0.5 x 54.5 x 1.4^2) + (41 x 12.4) - (54.5 X 9.8 X 2.1)
wd = 630.75 j
Answer:
Work is done by the heart on the blood during this time is 0.04 J
Explanation:
Given :
Mass of blood pumped, m = 80 g = 0.08 kg
Initial speed of the blood, u = 0 m/s
Final speed of the blood, v = 1 m/s
Initial kinetic energy of blood is determine by the relation:

Final kinetic energy of blood is determine by the relation:

Applying work-energy theorem,
Work done = Change in kinetic energy
W = E₂ - E₁

Substitute the suitable values in the above equation.

W = 0.04 J
The correct answer in this case is B. Harmonic.
The remaining answers refer to other parts of a musical composition, and some such as the pitch can even be found in the study of human voice.
Neutrons don't have any charge