The statement that would be held true for an acidic solution would be option C. The molarity or concentration of the hydronium ions would be more than that of the hydroxide ions. As the acidity of a solution increases as there is a greater amount of H+ or H3O+ ions present, within it. This is will give us a low pH and thus is quite acidic.
If the concentrations of the OH- and H3O+ are the same then the solution would be neutral, and if the opposite is true. The concentration of OH- is more than H3O+ than the solution would be basic.
We are given with the equilibrium constant of acid, HF and is asked to calculate the pH of 0.30 M NaF solution. The formula to be followed is
Ka = [H+][F-]/[HF]Ka = 7.2 x 10 -4 = x^2/[0.3-x]x = [H+]= pH = -log (H+) = 1.84
Answer:
375 K
Explanation:
Using the experssion shown below as:

At vaporization point, the liquid and the gaseous phase is in the equilibrium.
Thus,

So,

Given that:

Also, 1 kJ = 10³ J
So,


So, temperature is :


<u>T= 375 K</u>