Answer:
Option E. 2.04 L
Explanation:
Data obtained from the question include:
Molarity of NaCl = 2.25 M
Mole of NaCl = 4.58 moles
Volume =..?
Molarity is simply defined as the mole of solute per unit litre of the solution. It is represented mathematically as:
Molarity = mole /Volume
With the above formula, we can obtain the volume of the solution as follow:
Molarity = mole /Volume
2.25 = 4.58/volume
Cross multiply
2.25 x volume = 4.58
Divide both side by 2.25
Volume = 4.58/2.25
Volume = 2.04 L
Therefore, the volume of the solution is 2.04 L
Molecular equation
Hg₂(NO₃)₂ (aq) + KI(aq) ⇒Hg₂I₂(s) + 2KNO₃(aq)
Total Ionic equation
Hg²⁺(aq) + 2NO³⁻(aq) + 2K⁺aq) ⇒Hg₂I₂(s) + 2K⁺(aq) + NO³⁻ (aq)
Net Ionic equation
Hg²⁺(aq) + 2I⁻(aq) ⇒ Hg₂I₂(s)
<h3>What is the molecular equation?</h3>
Sometimes, a balanced equation is all that is used to refer to a chemical equation. Any ionic substances or acids are represented using their chemical formulas as neutral compounds in a molecular equation. Each substance's state is described in parenthesis after the formula. A complete ionic equation also contains the spectator ions, whereas a net ionic equation just displays the chemical species that are involved in a reaction.
The steps listed below can be used to determine the net ionic equation for a specific reaction:
Include the states of each chemical in the balanced molecular equation for the reaction.
To know more about the molecular equation, visit:
brainly.com/question/14286552
#SPJ4
B. The inhibitor wouldn’t stop sunlight or water, but it stops glucose production (from photosynthesis) and u could call glucose the plant’s food.