Answer:
The volume of the gas will not change because the metal can is limiting it
Explanation:
Insead, Gay-Lussac's law tells us that the pressure will increase with the temprature unil the can eventually explodes, then allowing the volume to rapidly increase.
Answer:
hydration reaction
Explanation:
The type of reaction would be hydration reaction.
<u>Hydration reaction generally involves a chemical reaction of water with another reactant and in which the water ends up being converted to another product entirely. </u>
A good example of hydration reaction is the reaction between alkene and water leading to the production of alcohol.
⇄ 
Answer:
2.64 M
Explanation:
To find the molarity, you need to (1) convert grams to moles (via molar mass), then (2) convert mL to L, and then (3) calculate the molarity (via molarity ratio). The final answer should have 3 sig figs to match the sigs figs of the given values.
(Step 1)
Molar Mass (NH₄NO₃): 2(14.007 g/mol) + 4(1.008 g/mol) + 3(15.998 g/mol)
Molar Mass (NH₄NO₃): 80.04 g/mol
66.5 grams NH₄NO₃ 1 mole
--------------------------------- x ---------------------- = 0.831 moles NH₄NO₃
80.04 grams
(Step 2)
1,000 mL = 1 L
315 mL 1 L
-------------- x ------------------ = 0.315 L
1,000 mL
(Step 3)
Molarity = moles / volume
Molarity = 0.831 moles / 0.315 L
Molarity = 2.64 M
Answer:
A sample of helium gas has a volume of 620mL at a temperature of 500 K. If we ... to 100 K while keeping the pressure constant, what will the new volume be?
Explanation: