Answer:
4 m/s
Explanation:
From the question given above, the following data were obtained:
Maximum range (Rₘₐₓ) = 1.6 m
Acceleration due to gravity (g) = 10 m/s²
Initial velocity (u) =?
The initial velocity of the projectile can be obtained as follow:
Rₘₐₓ = u² / g
1.6 = u² / 10
Cross multiply
u² = 1.6 × 10
u² = 16
Take the square root of both side
u = √16
u = 4 m/s
Therefore, the velocity of the projectile is 4 m/s
Answer:
The rotor's angular velocity is 82.73rad/s
Explanation:
It is a curvilinear movement of a constant radius. If there is uniform angular acceleration, then it is a circular motion with constant acceleration, whose equations are analogous to that of the translational motion.
Calculating the initial velocity of the rotor, V1 in rad/s
V1 = 610rev/minute × 6.28 × 1miute/60secs
V1 = 63.85rad/s
Using kinematic equation to calculate the final velocity of the rotor
Given:
Angular acceleration = 5.9rad/s^2
Time,t= 3.2seconds
V2 = V1 + a × t
V2 = 63.85 + (5.9)× (3.2)
V2 = 63.85 + 18.88
V2 = 82.73rads/s
Answer:
Potential
Explanation:
Potential energy is the energy stored while kinetic energy is motional energy.
Potential itself means "having capacity/energy".
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3>
Given parameters:
Speed of car = 50m/s
Time of travel = 5minutes (300s)
Unknown;
Distance of travel = ?
To solve this problem, we need to understand how speed relates with distance and time.
Speed is a physical quantity. It is the distance traveled divided by time taken.
Speed = 
So,
Distance = speed x time
Input the parameters and solve for the distance;
Distance = 50m/s x 300s
Distance = 15000m
The distance covered during this time interval and speed is 15000m
You estimate the radius of thebig wheel to be 15 {\rm m}, and you use your watch tofind that each loop