Answer: the thing that brings you life- h2o- idrk the question but if this helps your welcome ^-^have a good day
Explanation:
Answer:
x = 7.62 m
Explanation:
First we need to calculate the weight of the rocket:
W = mg
we will use the gravity as 9.8 m/s². We have the mass (500 g or 0.5 kg) so the weight is:
W = 0.5 * 9.8 = 4.9 N
We know that the rocket exerts a force of 8 N. And from that force, we also know that the Weight is exerting a force of 4.9. From here, we can calculate the acceleration of the rocket:
F - W = m*a
a = F - W/m
Solving for a:
a = (8 - 4.9) / 0.5
a = 6.2 m/s²
As the rocket is accelerating in an upward direction, we can calculate the distance it reached, assuming that the innitial speed of the rocket is 0. so, using the following expression we will calculate the time which the rocket took to blast off:
y = vo*t + 1/2 at²
y = 1/2at²
Solving for t:
t = √2y/a
t = √2 * 20 / 6.2
t = √6.45 = 2.54 s
Now that we have the time, we can calculate the horizontal distance:
x = V*t
Solving for x:
x = 3 * 2.54 = 7.62 m
Answer: this one is tough. There is a estimated 1.2 billion drivers to help best I could. I did the math the best I could and didn’t get an answer close to the choices. Just guessing I’d guess C. 20,000 because of logic.
Explanation: I can’t help much but would love to hear how to work this out.
Answer:
Final speed = 2.067 m/s
Explanation:
We are told that the child weighs 26 kg.
Also, that the wagon weighs 5kg.
Thus,initial mass of the child and wagon with ball is;
m_i = 26 + 5 = 31 kg.
Also, we are told that the child now dropped 1.5 kg ball from the wagon. So,
Final mass is;
m_f = 26 + 5 - 1 = 30 kg
Now, from conservation of linear momentum, we know that;
Initial momentum = final momentum
Thus;
m_i * v_i = m_f * v_f
Where v_i is initial velocity and v_f is final velocity.
Making v_f the subject, we have;
v_f = (m_i * v_i)/m_f
We are given that initial velocity v_i = 2 m/s
Plugging in the relevant values, we have;
v_f = (31 * 2)/30
v_f = 2.067 m/s