Answer:
10 m/s
Explanation:
Momentum before collision = momentum after collision
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
(8 kg)(8 m/s) + (6 kg)(6 m/s) = (8 kg)(5 m/s) + (6 kg) v
64 kg m/s + 36 kg m/s = 40 kg m/s + (6 kg) v
60 kg m/s = (6 kg) v
v = 10 m/s
Answer:
C. while the magnet is moving
Explanation:
Electromagnetic induction implies the production of electric current by mere movement of a magnet with respect to a coil or wire.
In the given question, current would be induced in the wire only when the magnet moves. That is either when the magnet is pushed into a wire, or when pulled out. But no current would flow through the wire when the magnet is left there for a while.
The current is induced because of the motion involved. Thus, the appropriate option is C.
If this is about simple machines the answer is: Inclined plane
Answer:
The correct answer is - option C. G.
Explanation:
In this reaction diagram, there is a representation of the reaction profile. The reaction profile shows the change that takes place during a reaction in the energy of reactants or substrate and products. In this profile, activation energy looks like a hump in the line, and the minimum energy required to initiate the reaction.
The overall energy of the reaction, including or excluding activation energy depends on the nature of the reaction if it is exothermic or endothermic. and products are represented by the G which shows the difference between the energy of the reactants and products.