Answer:

Given:
Temperature, T = 3.13 K
molar mass of molecular hydrogen, m = 2.02 g/mol = 
Solution:
To calculate the root mean squarer or rms speed of hydrogen molecule, we use the given formula:

where
R = rydberg's constant = 8.314 J/mol-K
Putting the values in the above formula:


The decrease in energy in the hydrogen molecule is what allows its formation on Earth, but in stars the great energy of the explosion has a kinetic energy so great that electrons cannot bind to another atom, which is why hydrogen has a single atom.
The hydrogen molecule is a form that two hydrogen atoms share their electrons decreasing the total energy of the molecule, this bond has a covalent and hydrogen bonding characteristic.
In a stellar explosion, the energy released increases the energy of the hydrogen atom, for which we have two possibilities:
- Its electron is lost, so we are in a single proton, in the case of structures where the proton and the elector are
- The hydrogen atom remains but the energy of the atom is very high so the kinetic energy of the electron prevents the electron from being shared by the other atom and the molecule cannot be formed.
When the atoms are thrown into space, the separation between them is so high that it does not allow electrons to be shared and molecules cannot be formed either.
In conclusion, the decrease in energy in the hydrogen molecule is what allows its formation on Earth, but in stars the great energy of the explosion has a kinetic energy so great that electrons cannot join another atom, which is why the hydrogen has only one atom.
Learn more about the Hydrogen atom here:
brainly.com/question/22464200
<span>Work, very simply, equals force times distance (when the force and distance are in the same direction. otherwise you get a little bit of trig added on) \[W=F*\Delta x\] W=70N * 9.0 m = 630 Nm = 630 J</span>
Answer:
The horizontal distance is 4.823 m
Solution:
As per the question:
Mass of man, m = 65.0 kg
Height of the hill, H = 5.00 m
Mass of the backpack, m' = 20.0 kg
Height of ledge, h = 2 m
Now,
To calculate the horizontal distance from the edge of the ledge:
Making use of the principle of conservation of energy both at the top and bottom of the hill (frictionless), the total mechanical energy will remain conserved.
Now,
where
KE = Kinetic energy
PE = Potential energy
Initially, the man starts, form rest thus the velocity at start will be zero and hence the initial Kinetic energy will also be zero.
Also, the initial potential energy will be converted into the kinetic energy thus the final potential energy will be zero.
Therefore,
where
v = velocity at the hill's bottom
Now,
Making use of the principle of conservation of momentum in order to calculate the velocity after the inclusion, v' of the backpack:



Now, time taken for the fall:



Now, the horizontal distance is given by:
x = v't = 
Answer:
A) Propagation of pressure fluctuations in a medium
B) air is the medium in which the wave is transported,
Explanation:
Part A.
A sound wave is a longitudinal oscillation of the molecules that forms in a material medium, they can be solid, liquid or gases, therefore the wave propagates in the same direction as the oscillation of the particles.
The most correct answer is:
* Propagation of pressure fluctuations in a medium
Part b
air is the medium in which the wave is transported, otherwise it cannot propagate