<span>When two waves of same frequency travel in a medium simultaneously in the same direction then, due to their superposition, the resultant intensity at any point of the medium is different from the sum of intensities of the two waves. At certain points the intensity of the resultant wave has a large value while at some points it has a very small or zero. This is called wave interference.</span>
Answer:
3.1 m/s²
Explanation:
Apply Newton's second law:
∑F = ma
40 N = (13 kg) a
a ≈ 3.1 m/s²
Its actually A. I did the same question and A was the correct answer.
Answer:

Explanation:
Given,
For the first rocket,
- Initial velocity of the first rocket A =

- Acceleration of the first rocket =

For the second rocket,
- Initial velocity of the second rocket B =

- Displacement of both the rockets A and B = s = 0 m
Fro the first rocket,
Let 't' be the time taken by the first rocket A for whole the displacement

Let
be the acceleration of the second rocket B for the same time interval
from the kinematics,


Hence the acceleration of the second rocket B is -33.65\ m/s^2.