(a) The system of interest if the acceleration of the child in the wagon is to be calculated are the wagon and the children outside the wagon.
(b) The acceleration of the child-wagon system is 0.33 m/s².
(c) Acceleration of the child-wagon system is zero when the frictional force is 21 N.
<h3>
Net force on the third child</h3>
Apply Newton's second law of motion;
∑F = ma
where;
- ∑F is net force
- m is mass of the third child
- a is acceleration of the third child
∑F = 96 N - 75 N - 12 N = 9 N
Thus, the system of interest if the acceleration of the child in the wagon is to be calculated are;
- the wagon
- the children outside the wagon
<h3>Free body diagram</h3>
→ → Ф ←
1st child friction wagon 2nd child
<h3>Acceleration of the child and wagon system</h3>
a = ∑F/m
a = 9 N / 27 kg
a = 0.33 m/s²
<h3>When the frictional force is 21 N</h3>
∑F = 96 N - 75 N - 21 N = 0 N
a = ∑F/m
a = 0/27 kg
a = 0 m/s²
Learn more about net force here: brainly.com/question/14361879
#SPJ1
The particles always move parallel and perpendicular to the waves. The waves which are in the water moves a circle. Both up and down and back and forth.
Good luck :)
C- 10ft. Hope this helped. Have a great day! :D
To minimize neutron leakage from a reactor, the ratio of the surface area to the volume should be a minimum. For a given volume V the ratio of the sphere will be
.
We know that the surface area and volume of the sphere is given by:

Therefore, the ratio between the surface area and the volume for the sphere will be:

Equating the volume to the constant c, we will find the value of
.

Substituting the value of r in the ration between surface area and volume, we get:

Calculating the constants, we get:

Hence, the ration between surface area and volume is 
To learn more about surface area and volume of sphere, refer to:
brainly.com/question/4387241
#SPJ4