Answer:
E₁ = 1.042 eV
E₄₋₃= 7.29 eV
E₄₋₂= 12.50 eV
E₄₋₁= 15.63 eV
E₃₋₂= 5.21eV
E₃₋₁= 8.34eV
E₂₋₁= 3.13eV
Explanation:
The energy in an infinite square-well potential is giving by:
<em>where, h: Planck constant = 6.62x10⁻³⁴J.s, n: is the energy state, m: mass of the electron and L: widht of the square-well potential </em>
<u>The energy of the electron in the ground state, </u><u>n = 1</u><u>, is: </u>
The photon energies that are emitted as the electron jumps to the ground state is the difference between the states:





Have a nice day!
2000J
Explanation:
Given parameters:
Extension = 0.5m
Spring constant = 16000N/m
Unknown:
Energy stored in the bow string = ?
Solution:
The energy stored in a bow string is an elastic potential energy.
It can be calculated using the expression below;
Elastic energy =
K e²
Where k is the spring constant
e is the extension
Input the parameters;
Elastic energy =
K e²
=
x 16000 x 0.5²
= 2000J
learn more:
Potential energy brainly.com/question/10770261
#learnwithBrainly
Answer:
Add Ff from Fa
Explanation:
Fnet = sum of all force
horizontal net force = Ff + Fa
Answer:
either a Nitrogen atom, Oxygen atom, or a Flourine atom
Explanation:
The atom has to be more electronegative than hydrogen for the bond to form.