Isotopes are basically, different types of the same atom. Isotopes are atoms that have different neutron numbers but the same proton numbers.
Concentration of H+ ions in HNO3 solution is 10⁻¹ which is equal to 0.1 M
![\bf \: pH \: = - log[{h}^{ + }]](https://tex.z-dn.net/?f=%20%5Cbf%20%20%5C%3A%20pH%20%5C%3A%20%20%3D%20%20-%20log%5B%7Bh%7D%5E%7B%20%2B%20%7D%5D)
putting the value we get
![\sf \dashrightarrow \: pH \: = - log \: [ \frac{1}{10}] \\ \\ \sf \dashrightarrow \: pH \: = - log \: {10}^{ - 1} \\ \\ \sf \dashrightarrow \: pH \: = 1](https://tex.z-dn.net/?f=%20%20%5Csf%20%5Cdashrightarrow%20%20%5C%3A%20pH%20%5C%3A%20%20%3D%20%20-%20log%20%5C%3A%20%5B%20%5Cfrac%7B1%7D%7B10%7D%5D%20%5C%5C%20%20%5C%5C%20%5Csf%20%5Cdashrightarrow%20%20%5C%3A%20pH%20%5C%3A%20%3D%20%20%20-%20log%20%5C%3A%20%7B10%7D%5E%7B%20-%201%7D%20%20%5C%5C%20%20%5C%5C%20%5Csf%20%5Cdashrightarrow%20%20%5C%3A%20pH%20%5C%3A%20%3D%201)
So, the required option is A) 1
Answer:
A loud ordinary conversation following the supplied information in the question is about 4500 dB. But, in the official decibel system measure a loud conversation does not overcome 100 dB.
Explanation:
Using the supplied data of the exercise, we say that in a restaurant conversation the value is 45 dB. If we multiply this by 100 we will have a value for a laud ordinary conversation.
45×100 = 4500 dB.
but as I mentioned in the answer, in the official decibel system measure a loud conversation between 2 man reaches a maximal of 100 dB.
Answer:
to make sure the cholerie is not to high