1. An____ionic____ bond forms when one atom gives up one or more electrons to another atom.
2. Atoms or molecules with a net electric charge due to the loss or gain of one or more electrons are ions.
3. A_covalent__bond involves the sharing of electron pairs between atoms, also known as a molecular bond. 4. When one pair of electrons is shared between two atoms, a single bond is formed. 5. When two pairs of electrons are shared between two atoms, a double bond is formed. 6. A polar covalent bond is a type of chemical bond where a pair of electrons is unequally shared between two atoms. As a result, one end of the molecule has a slightly negative charge and the other a slightly positive charge. 7. Atoms involved in a nonpolar covalent bond equally share electrons; there is no charge separation to the molecule. 8. A weak bond called a van der waals bond results from an attraction between a slightly positive region in a molecule and a slightly negative region in the same or a different molecule
Answer : The final temperature would be, 791.1 K
Explanation :
According to the Arrhenius equation,

or,
![\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= rate constant at
= 
= rate constant at
= 
= activation energy for the reaction = 265 kJ/mol = 265000 J/mol
R = gas constant = 8.314 J/mole.K
= initial temperature = 
= final temperature = ?
Now put all the given values in this formula, we get:
![\log (\frac{4\times K_1}{K_1})=\frac{265000J/mol}{2.303\times 8.314J/mole.K}[\frac{1}{733K}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7B4%5Ctimes%20K_1%7D%7BK_1%7D%29%3D%5Cfrac%7B265000J%2Fmol%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B733K%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)

Therefore, the final temperature would be, 791.1 K
Precipitation is the short-term condition of the atmosphere