Answer:
2.2 x 10²² molecules.
Explanation:
- Firstly, we need to calculate the no. of moles in (6.0 g) sodium phosphate:
<em>no. of moles = mass/molar mass </em>= (6.0 g)/(163.94 g/mol) = <em>0.0366 mol.</em>
- <em>It is known that every mole of a molecule contains Avogadro's number (6.022 x 10²³) of molecules.</em>
<em />
<u><em>using cross multiplication:</em></u>
1.0 mole of sodium phosphate contains → 6.022 x 10²³ molecules.
0.0366 mole of sodium phosphate contains → ??? molecules.
<em>∴ The no. of molecules in 6.0 g of sodium phosphate</em> = (6.022 x 10²³ molecules)(0.0366 mole)/(1.0 mole) = <em>2.2 x 10²² molecules.</em>
<span>The molecular formula that describes the problem is
2CH3COOH (aq) + Ca(OH)2 (s) ---> Ca(CH3COO)2 (aq) + 2H2O (l)
The net equation is written as follows:
2CH3COOH- (aq) + 2H+ (aq) + Ca(OH)2 (s) ---> Ca2+ (aq) + 2 CH3COO- (aq) + 2H2O (l)
canceling out spectator ions
2H+ (aq) + Ca(OH)2 (s) ---> Ca2+ (aq) + 2 H2O (l)</span>
48.3 g AgNO3 / 169.9 g/mol = 0.284 moles AgNO3
0.284 mol AgNO3 X (1 mol Ag2CrO4/2 mol AgNO3) = 0.142 mol Ag2CrO4
0.142 mol Ag2CrO4 X 331.7 g/mol = 47.1 g Ag2CrO4