M1 = 17.45 M
M2 = 0.83 M
V2 = 250 ml
M1. V1= M2. V2
V1 = (M2. V2)/M1 = (0.83× 250)/ 17.45= 11.89 ml
Answer:- C. 16.4 L
Solution:- The given balanced equation is:
From this equation, there is 2:1 mol ratio between HCl and hydrogen gas. First of all we calculate the moles of hydrogen gas from given grams of HCl using stoichiometry and then the volume of hydrogen gas could be calculated using ideal gas law equation, PV = nRT.
Molar mass of HCl = 1.008 + 35.45 = 36.458 gram per mol
The calculations are shown below:
=
Now we will use ideal gas equation to calculate the volume.
n = 0.672 mol
T = 25 + 273 = 298 K
P = 101.3 kPa = 1 atm
R =
PV = nRT
1(V) = (0.672)(0.0821)(298)
V = 16.4 L
From calculations, 16.4 L of hydrogen gas are formed and so the correct choice is C.
Since HCl04 is a strong acid, being [H+], and a molarity of 2.1 M.
To solve for pH:
pH = -log (M) = -log(2.1M) = -0.32, which is clearly a negative number.
However, to verify the answer, just use the pH meter in determining the pH of the solution.
Answer: pressure
Explanation:
the gas is changing because of the torch being lit inside the hot air balloon which make the volume change when the hot air balloon get put up
Base peak: The most intense (tallest) peak in a mass spectrum, due to the ion with the greatest relative abundance (relative intensity; height of peak along the spectrum's y-axis). Not to be confused with molecular ion: base peaks are not always molecular ions, and molecular ions are not always base peaks.