Answer:
-8.56V
Explanation:
Our values are given by,
e = 6.04 V
Φ = 30.3
VC = 5.32
We can calculate the voltage across the circuit with the emf formula, that is,




Now, Using Kirchoff Voltage Law,


Finally we have the potential difference across the inductor.

Answer:
Between 2.0 s and 4.0 s (B and C)
Between 5.0 s and 8.0 s (D and E)
Between 10.0 s and 11.0 s (F and G)
Explanation:
The graph shown in the figure is a velocity-time graph, which means that:
- On the x-axis, the time is plotted
- On the y-axis, the velocity is plotted
Therefore, this means that the object is not moving when the line is horizontal (because at that moment, the velocity is constant, so the object is not moving). This occurs in the following intervals:
Between 2.0 s and 4.0 s (B and C)
Between 5.0 s and 8.0 s (D and E)
Between 10.0 s and 11.0 s (F and G)
From the graph, it would be possible to infer additional information. In particular:
- The area under the graph represents the total distance covered by the object
- The slope of the graph represents the acceleration of the object
Answer:
Speed, 
Explanation:
Given that,
Distance covered by the electron, d = 32 cm = 0.32 m
Time, t = 2 ns
We need to find the speed of an electron. Speed is equal to distance covered divided by time. So,

So, the speed of the electron is
.
Answer:
A. & B. Heat energy is needed to convert solid into a liquid because heat energy increases the kinetic energy of the particles. The heat energy that it used to change 1 kg of solid into liquid at atmospheric pressure and at its melting point is called the latent heat of fusion.
C.) Friction.
Reason:
No force is opposing the motion of an object except frictional force. Hence an object requires 15 N of force to set an object in motion and is greater than friction. Hope this helps, have a great day ahead!