Given:
10^10 electrons per second
To justify that coulomb is a very large unit for practical use, we need to convert the quantity of electron given to Coulombs:
From literature,
1 Coulomb is equivalent to 6.242×10^18 electrons<span>.
So,
= 10^10 electrons * (1 coulomb/</span><span>6.242×10^18</span> electrons) / second
<span>= 1.602 x 10^-9 coulumbs
This value is too small to be used in an actual setting.
</span><span>
</span>
Answer: 6067.5 N
Explanation:
Work = Change in Energy. To start, all of the energy is kinetic energy, so find the total KE using: KE = 1/2(m)(v^2). Plug in 1980 kg for m and 15.5 m/s for v and get KE = 237847.5 J.
Now, plug this in for work: Work = Force * Distance; so, divide work by distance to get 6067.5 N.
Answer:
If the avg speed is 10mi/h and you want to know how long it will take to run 2.5mi/h you put that as a ratio 2.5/10 which is 1/4 of an hour so it will take 15 minutes to run 2.5 miles
Explanation:
Answer:Orbital period =21.22hrs
Explanation:
given that
mass of earth M = 5.97 x 10^24 kg
radius of a satellite's orbit, R= earth's radius + height of the satellite
6.38X 10^6 + 3.25 X10^7 m =3.89 X 10^7m
Speed of satellite, v= 
where G = 6.673 x 10-11 N m2/kg2
V= \sqrt (6.673x10^-11 x 5.97x10^ 24)/(3.89 X 10^ 7m)
V =10,241082.2
v= 3,200.2m/s
a) Orbital period
= 
V= 
T= 2
r/ V
= 2 X 3.142 X 3.89 X 10^7m/ 3,200.2m/s
=76,385.1 s
60 sec= 1min
60mins = 1hr
76,385.1s =hr
76,385.1/3600=21.22hrs