Answer:
90 ft/s is what i put. Let me know if its wrong
The correct formula to use is: F = G [M1*M2] /r^2
Where,
G = the force of gravity
M1 = the mass of the first object [the mass of the astronaut]
M2 = the mass of the second object [the mass of the planet]
r = the distance between the two objects in metre
F = 6.67 * 10^-11 [66.5 * 8.43 * 10^23] / [4.40 * 10^6]^2
F = 193N.<span />
Answer:
Option A
Measures light from distant objects
Explanation:
A spectroscope is used to measure the use of light from a distant object to work out the object is made of.
It could be the single-most powerful tool astronomers use.
Professor Fred Watson from the Australian Astronomical Observatory says that "It lets you see the chemicals being absorbed or emitted by the light source"
Answer:
C
Explanation:
Formula E=F/C also E=V/d
In this case use the second formula; E=V/d
Data given; E=4N/C d=8m
So v=E X d
V=4x8=32V
k.e=eV= 2X32=64eV
Answer:
A) Inertia
Explanation:
Inertia is why objects tend to resist changes in their motion. Like a rolling ball will keep rolling unless we try to add friction to it, which then would stop the ball.