Answer:
a) v = +/- 0.323 m/s
b) x = -0.080134 m
c) v = +/- 1.004 m/s
Explanation:
Given:
a = - (0.1 + sin(x/b))
b = 0.8
v = 1 m/s @ x = 0
Find:
(a) the velocity of the particle when x = -1 m
(b) the position where the velocity is maximum
(c) the maximum velocity.
Solution:
- We will compute the velocity by integrating a by dt.
a = v*dv / dx = - (0.1 + sin(x/0.8))
- Separate variables:
v*dv = - (0.1 + sin(x/0.8)) . dx
-Integrate from v = 1 m/s @ x = 0:
0.5(v^2) = - (0.1x - 0.8cos(x/0.8)) - 0.8 + 0.5
0.5v^2 = 0.8cos(x/0.8) - 0.1x - 0.3
- Evaluate @ x = -1
0.5v^2 = 0.8 cos(-1/0.8) + 0.1 -0.3
v = sqrt (0.104516)
v = +/- 0.323 m/s
- v = v_max when a = 0:
-0.1 = sin(x/0.8)
x = -0.8*0.1002
x = -0.080134 m
- Hence,
v^2 = 1.6 cos(-0.080134/0.8) -0.6 -0.2*-0.080134
v = sqrt (0.504)
v = +/- 1.004 m/s
Answer:
Babies come from heaven didn't you know?
Answer:
B A and C
Explanation:
Given:
Specimen σ
σ
A +450 -150
B +300 -300
C +500 -200
Solution:
Compute the mean stress
σ
= (σ
+ σ
)/2
σ
= (450 + (-150)) / 2
= (450 - 150) / 2
= 300/2
σ
= 150 MPa
σ
= (300 + (-300))/2
= (300 - 300) / 2
= 0/2
σ
= 0 MPa
σ
= (500 + (-200))/2
= (500 - 200) / 2
= 300/2
σ
= 150 MPa
Compute stress amplitude:
σ
= (σ
- σ
)/2
σ
= (450 - (-150)) / 2
= (450 + 150) / 2
= 600/2
σ
= 300 MPa
σ
= (300- (-300)) / 2
= (300 + 300) / 2
= 600/2
σ
= 300 MPa
σ
= (500 - (-200))/2
= (500 + 200) / 2
= 700 / 2
σ
= 350 MPa
From the above results it is concluded that the longest fatigue lifetime is of specimen B because it has the minimum mean stress.
Next, the specimen A has the fatigue lifetime which is shorter than B but longer than specimen C.
In the last comes specimen C which has the shortest fatigue lifetime because it has the higher mean stress and highest stress amplitude.
AnsweCalculate a heat pump's coefficient of performance. ... Heat pumps, air conditioners, and refrigerators utilize heat transfer from cold to hot.Explanation:
Presentation, or speech I’d imagine