Yes a volcanic eruption can suddenly bury a city ! if you look up some stuff on pompeii you can learn more
Answer:
The line voltage of the three phase network is 346.41 V
Explanation:
Star Connected Load
Resistance, R₁ = R₂ = R₃ = 18 Ω
For a star connected load, the line current = the phase current, that is we have

Whereby the the voltage across each resistance =
is given by the relation;
=
× R
Hence;
=
=
× R = 25 × 8 = 200 V
Therefore we have;
The line voltage,
= √3 ×
= √3 × 200 = 346.41 V.
Hence, the line voltage of the three phase network = 346.41 V.
Answer:
(a) attached below
(b)

(c) 
(d)
Ω
(e)
and 
Explanation:
Given data:





(a) Draw the power triangle for each load and for the combined load.
°
°
≅ 

≅ 
The negative sign means that the load 2 is providing reactive power rather than consuming
Then the combined load will be


(b) Determine the power factor of the combined load and state whether lagging or leading.

or in the polar form
°

The relationship between Apparent power S and Current I is

Since there is conjugate of current I therefore, the angle will become negative and hence power factor will be lagging.
(c) Determine the magnitude of the line current from the source.
Current of the combined load can be found by


(d) Δ-connected capacitors are now installed in parallel with the combined load. What value of capacitive reactance is needed in each leg of the A to make the source power factor unity?Give your answer in Ω


Ω
(e) Compute the magnitude of the current in each capacitor and the line current from the source.
Current flowing in the capacitor is

Line current flowing from the source is

Answer:
It will take the steel 425.925sec to cool from 1150k to 400k
Explanation:
Detailed explanation and calculation is shown in the image
Answer: The size of the ion and the charge of the ion are the factors that affect solubility in water.
Explanation:
Lead lose electrons to become cations. Compounds with small ions tend to be less soluble than compounds with large ions. Large ions have higher solubility. This is because small ions are closely packed so it is difficult for water to break them apart.
Compounds with small ions seemingly have less solubility than those with large ions. The ions in the compound attract each other, and the water molecules attract the ions. Compounds would be soluble in water If the water molecules have a greater or higher attraction to the ions than ions have for each other.