Answer:
A) approximate alkalinity = 123.361 mg/l
B) exact alkalinity = 124.708 mg/l
Explanation:
Given data :
A) determine approximate alkalinity first
Bicarbonate ion = 120 mg/l
carbonate ion = 15 mg/l
Approximate alkalinity = ( carbonate ion ) * 50/30 + ( bicarbonate ion ) * 50/61
= 15 * (50/30) + 120*( 50/61 ) = 123.361 mg/l as CaCO3
B) calculate the exact alkalinity of the water if the pH = 9.43
pH + pOH = 14
9.43 + pOH = 14. therefore pOH = 14 - 9.43 = 4.57
[OH^- ] = 10^-4.57 = 2.692*10^-5 moles/l
[ OH^- ] = 2.692*10^-5 * 179/mole * 10^3 mg/g = 0.458 mg/l
[ H^+ ] = 10^-9.43 * 1 * 10^3 = 3.7154 * 10^-7 mg/l
therefore the exact alkalinity can be calculated as
= ( approximate alkalinity ) + ( [ OH^- ] * 50/17 ) - ( [ H^+ ] * 50/1 )
= 123.361 + ( 0.458 * 50/17 ) - ( 3.7154 * 10^-7 * 50/1 )
= 124.708 mg/l
U have to find the bill it into the internet in order for me to get the answer. Also u have to make it change into the call.
Answer:
Option B Lower than
Explanation:
Gauge pressure is a relative measurement based on atmospheric pressure. Gauge pressure can be positive if it is above atmospheric pressure or it can also be negative it is below. On another hand, absolute pressure is an actual pressure in a space and its value has always to be zero or above. Basically absolute pressure is zero if it is in a perfect vacuum. So the measurement of absolute pressure is gauge pressure + atmospheric pressure. This is the reason in normal condition the gauge pressure = absolute pressure - atmospheric pressure and therefore is lower than absolute pressure
<h3>Hey Mate Here Is Your Answer</h3>
Keywords Are Reserved Words Which Are Not Use As Normal Cases But Used For Special Purpose In Our Program whereas, Data Type Tells The Compiler And Interpreter How The Program Is Going To Be Executed And Can Be Used At Every Cases.
<h3>Hope This Helps You ❤️</h3>