1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nitella [24]
3 years ago
9

What is the activation energy (Q) for a vacancy formation if 10 moles of a metal have 2.3 X 10^13 vacancies at 425°C?

Engineering
1 answer:
Yakvenalex [24]3 years ago
4 0

Answer:

Activation\ Energy=2.5\times 10^{-19}\ J

Explanation:

Using the expression shown below as:

N_v=N\times e^{-\frac {Q_v}{k\times T}

Where,

N_v is the number of vacancies

N is the number of defective sites

k is Boltzmann's constant = 1.38\times 10^{-23}\ J/K

{Q_v} is the activation energy

T is the temperature

Given that:

N_v=2.3\times 10^{13}

N = 10 moles

1 mole = 6.023\times 10^{23}

So,

N = 10\times 6.023\times 10^{23}=6.023\times 10^{24}

Temperature = 425°C

The conversion of T( °C) to T(K) is shown below:

T(K) = T( °C) + 273.15  

So,  

T = (425 + 273.15) K = 698.15 K  

T = 698.15 K

Applying the values as:

2.3\times 10^{13}=6.023\times 10^{24}\times e^{-\frac {Q_v}{1.38\times 10^{-23}\times 698.15}

ln[\frac {2.3}{6.023}\times 10^{-11}]=-\frac {Q_v}{1.38\times 10^{-23}\times 698.15}

Q_v=2.5\times 10^{-19}\ J

You might be interested in
A ball thrown vertically upward from the top of a building of 60ft with an initial velocity of vA=35 ft/s. Determine (a) how hig
Masteriza [31]

Answer:

A.) 62.5 ft

B.) 3.58 seconds

C.) 8.58 seconds

Explanation:

A.) Given that a ball is thrown vertically upward from the top of a building of 60ft with an initial velocity of vA=35 ft/s

To determine how high above the top of the building the ball will go before it stops at B, let us use the third equation of motion.

V^2 = U^2 - 2gH

Since the ball is going up, g will be negative. And at maximum height, V = 0

Substitute all the parameters into the formula

0 = 35^2 - 2 × 9.8 × H

19.6H = 1225

H = 1225/19.6

H = 62.5 ft

(B) The time tAB it takes to reach its maximum height will be achieved by using second equation of motion

H = Ut - 1/2gt^2

Substitutes all the parameters into the formula

62.5 = 35t - 1/2 × 9.8 × t^2

62.5 = 35t - 4.9t^2

4.9t^2 - 35t + 62.5 = 0

Let's use quadratic equations to find t

Divide all by 4.9

t^2 - 7.143t + 12.755 = 0

t^2 - 7.143t + 3.57^2 = - 12.755 + 3.57^2

( t - 3.57)^2 = 0.000102

( t - 3.57 ) = +/-( 0.01 )

t = 3.57 + 0.01

t = 3.58 seconds

Ignore the negative one.

(C) the total time tAC needed for it to reach the ground at C from the instant it is released.

When the object is falling back from B, the initial velocity = 0. And the height h will be 60 + 62.5 = 122.5 ft

Using equation 2 of equations of motion again.

h = 1/2gt^2

122.5 = 1/2 × 9.8 × t^2

122.5 = 4.9t^2

t^2 = 122.5/4.9

t^2 = 25

t = 5

Total time = 5 + 3.58 = 8.58 seconds

3 0
3 years ago
Compute the solution to x + 2x + 2x = 0 for Xo = 0 mm, vo = 1 mm/s and write down the closed-form expression for the response.
Nutka1998 [239]

Answer:

β = \frac{c}{\sqrt{km} } =  0.7071 ≈ 1 ( damping condition )

closed-form expression for the response is attached below

Explanation:

Given :  x + 2x + 2x = 0   for Xo = 0 mm and Vo = 1 mm/s

computing a solution :

M = 1,

c = 2,

k = 2,

Wn = \sqrt{\frac{k}{m} }  = \sqrt{2}  

next we determine the damping condition using the damping formula

β = \frac{c}{\sqrt{km} } =  0.7071 ≈ 1

from the condition above it can be said that the damping condition indicates underdamping

attached below is the closed form expression for the response

6 0
3 years ago
a circular pile, 19 m long is driven into a homogeneous sand layer. The piles width is 0.5 m. The standard penetration resistanc
Elena L [17]

Answer:

Point force (Qp) = 704 kn/m²

Explanation:

Given:

length = 19 m

Width = 0.5 m

fs = 4

Vicinity of the pile = 25

Find:

Point force (Qp)

Computation:

Point force (Qp) = fs²(l+v)

Point force (Qp) = 4²(25+19)

Point force (Qp) = 16(44)

Point force (Qp) = 704 kn/m²

5 0
3 years ago
How much force is required if the ramp is 15 ft long
lord [1]

Answer:

do yah stiil need help

Explanation:

6 0
3 years ago
A bridge hand consists of 13 cards. One way to evaluate a hand is to calculate the total high point count (HPC) where an ace is
son4ous [18]

Answer: Let us use the pickled file - DeckOfCardsList.dat.

Explanation: So that our possible outcome becomes

7♥, A♦, Q♠, 4♣, 8♠, 8♥, K♠, 2♦, 10♦, 9♦, K♥, Q♦, Q♣

HPC (High Point Count) = 16  

4 0
3 years ago
Other questions:
  • a valueable preserved biological specimen is weighed by suspeding it from a spring scale. it weighs 0.45 N when it is suspendedi
    11·1 answer
  • Are ocean currents always cold
    10·1 answer
  • Carbon dioxide flows at a rate of 1.5 ft3 /s from a 3-in. pipe in which the pressure and temperature are 20 psi (gage) and 120 °
    8·1 answer
  • Two blocks of rubber with a modulus of rigidity G =10 MPa are bonded to rigid supports and to a plate AB. Knowing that b = 200 m
    8·1 answer
  • In a production turning operation, the foreman has decreed that a single pass must be completed on the cylindrical workpiece in
    7·1 answer
  • ________ is the amount of time it takes a person’s eyes to regain focus after seeing glare.
    8·2 answers
  • List two common units of measurement to describe height
    5·2 answers
  • Pointttttttttttttssssssssssss
    12·1 answer
  • One reason the shuttle turns on its back after liftoff is to give the pilot a view of the horizon. Why might this be useful?
    6·2 answers
  • Subject : SCIENCE
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!