1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
worty [1.4K]
3 years ago
9

Which of the following are considered income?

Mathematics
2 answers:
irina1246 [14]3 years ago
6 0

Answer:

Wages

Step-by-step explanation:

matrenka [14]3 years ago
3 0

Answer:

2. Wages

4. Allowance

Step-by-step explanation:

very simple question I wish I saw this earlier so I could help. Can I please get brainliest.

尺蛾翅蛾。(thank you.)

You might be interested in
How to find the area of a triangle with a base of 32ft
Sergeu [11.5K]
Well to find the area of any figure you must first have knowledge on the formula. The formula for a triangle is 1/2 x b x h. Since you have the base 32, multiply that by 1/2 which will give you 16. Then you have to multiply 16 by the height. I'm not sure what the height is because you never gave me one but hopefully this helped! God bless :)
4 0
4 years ago
Select the ordered pairs that are solutions to the inequality
sveticcg [70]

Answer:

I would say equal to twelve

Step-by-step explanation:

Hope this helps.

5 0
3 years ago
The Bradenton Post polled 1,356 adults in the city to determine whether they wet their toothbrush before they put toothpaste on
natulia [17]

Answer:

The mean is 0.54 and the standard deviation is 0.0135.

Step-by-step explanation:

i) the mean of the sampling distribution is 0.54

ii) the mean for the sampling distribution, p = 0.54

iii) therefore for the sampling distribution, q = ( 1 - 0.54) = 0.46

iv) the sample size of the distribution, n = 1356

v)  the\hspace{0.1cm} standard\hspace{0.1cm}  deviation\hspace{0.1cm}  s = \sqrt{\frac{p\times q}{n} }  = \sqrt{\frac{0.54\times 0.46}{1356} } = 0.0135

4 0
4 years ago
Una carraca contiene 2’5 decalitros de agua. ¿cuantas botellas de medio litro se necesitan para vaciar la garrafa? SI cada botel
emmainna [20.7K]
English please I can’t understand
8 0
3 years ago
1. Approximate the given quantity using a Taylor polynomial with n3.
Jet001 [13]

Answer:

See the explanation for the answer.

Step-by-step explanation:

Given function:

f(x) = x^{1/4}

The n-th order Taylor polynomial for function f with its center at a is:

p_{n}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(n)}a}{n!} (x-a)^{n}

As n = 3  So,

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{3!} (x-a)^{3}

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{6} (x-a)^{3}

p_{3}(x) = a^{1/4} + \frac{1}{4a^{ 3/4} }  (x-a)+ (\frac{1}{2})(-\frac{3}{16a^{7/4} } ) (x-a)^{2} +  (\frac{1}{6})(\frac{21}{64a^{11/4} } ) (x-a)^{3}

p_{3}(x) = 81^{1/4} + \frac{1}{4(81)^{ 3/4} }  (x-81)+ (\frac{1}{2})(-\frac{3}{16(81)^{7/4} } ) (x-81)^{2} +  (\frac{1}{6})(\frac{21}{64(81)^{11/4} } ) (x-81)^{3}

p_{3} (x) = 3 + 0.0092592593 (x - 81) + 1/2 ( - 0.000085733882) (x - 81)² + 1/6  

                                                                                  (0.0000018522752) (x-81)³

p_{3} (x)  =  0.0092592593 x - 0.000042866941 (x - 81)² + 0.00000030871254

                                                                                                       (x-81)³ + 2.25

Hence approximation at given quantity i.e.

x = 94

Putting x = 94

p_{3} (94)  =  0.0092592593 (94) - 0.000042866941 (94 - 81)² +          

                                                                 0.00000030871254 (94-81)³ + 2.25

         = 0.87037 03742 - 0.000042866941 (13)² + 0.00000030871254(13)³ +    

                                                                                                                       2.25

         = 0.87037 03742 - 0.000042866941 (169) +  

                                                                      0.00000030871254(2197) + 2.25

         = 0.87037 03742 - 0.007244513029 + 0.0006782414503 + 2.25

p_{3} (94)  = 3.113804102621

Compute the absolute error in the approximation assuming the exact value is given by a calculator.

Compute \sqrt[4]{94} as 94^{1/4} using calculator

Exact value:

E_{a}(94) = 3.113737258478

Compute absolute error:

Err = | 3.113804102621 - 3.113737258478 |

Err (94)  = 0.000066844143

If you round off the values then you get error as:

|3.11380 - 3.113737| = 0.000063

Err (94)  = 0.000063

If you round off the values up to 4 decimal places then you get error as:

|3.1138 - 3.1137| = 0.0001

Err (94)  = 0.0001

4 0
4 years ago
Other questions:
  • Delilah does 184184184 jumping jacks in 444 minutes. She does her jumping jacks at a constant rate. How many jumping jacks can D
    12·2 answers
  • Can someone explain a little? I forgot how to solve this. :/ ​
    10·1 answer
  • 7. Han's cell phone plan costs $200 to start. Then there is a $50 charge each month.
    14·2 answers
  • Scientist cindy Grade has developed a new thermometer. Unlike the thermometer developed by Gabriel Fahrenheit were 32°F marks th
    9·1 answer
  • I need to know how to determine the product of the fractions and simplify
    13·1 answer
  • The last line of a proof represents the given information. the argument. the conclusion. the assumptions.
    11·2 answers
  • Please tell me please
    11·1 answer
  • Solve for x <br> A) 3 <br> B) 11<br> C) 6 <br> D) 7
    11·1 answer
  • #13) Mrs. Frye says that the following triangles are congruent. Is she correct? Why or why not? ​
    9·1 answer
  • Pls pls pls help meee plssss
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!