When heating lithium carbonate (Li2CO3), it will dissociate to Li2O and Co2. So the balanced chemical equation of this reaction is Li2CO3 = Li2O + CO2.
Answer:
Explanation:
10 moles of oxygen atoms.\ \textbf{b)} 91.8 moles of oxygen at
Answer:
32.8%
Explanation:
All of the Pb⁺² species precipitated as lead(II) cromate, PbCrO₄ (we know this as excess K₂CrO₄ was used).
First we convert 0.130 g of PbCrO₄ into moles, using its molar mass:
- 0.130 g ÷ 323 g/mol = 4.02x10⁻⁴ mol PbCrO₄
There's 1 Pb⁺² mol per PbCrO₄ mol, so in total 4.02x10⁻⁴ moles of Pb⁺² were in the ethanoate sample.
We <u>convert those 4.02x10⁻⁴ moles of Pb into grams</u>:
- 4.02x10⁻⁴ mol * 207 g/mol = 0.083 g Pb
Finally we calculate the percentage composition of Pb:
- 0.083 g Pb / 0.254 g salt * 100% = 32.8%
Answer:
11.2 M → [HCl]
Explanation:
Solution density = Solution mass / Solution volume
35.38 % by mass, is the same to say 35.38 g of solute in 100 g of solution.
Let's determine the moles of our solute, HCl
35.38 g . 1 mol/36.45 g = 0.970 moles
Let's replace the data in solution density formula
1.161 g/mL = 100 g / Solution volume
Solution volume = 100 g / 1.161 g/mL → 86.1 mL
Let's convert the volume to L → 86.1 mL . 1L / 1000 mL = 0.0861 L
Molarity (M) → mol/L = 0.970 mol / 0.0861 L → 11.2 M