Answer:
evapouration is a type of vaporization that occur on the surface of liquid as it change into the gas phase.
hope it helps.
Group 1 elements since they have one outermost electron which they can give to chlorine which has 7 outermost electrons in order to form a stable compound.
Example
Pottasium (K) + Chlorine (Cl) = Potassium Chloride (KCL)
Input the atomic masses of Mg and P to give 134.84g/mol
Explanation:
The molar mass of a substance (atom or molecule or compound) is the mass in grams of one mole of the substance:
When dealing with an element the molar mass is the relative atomic mass expressed as g/mol.
For compounds, you add the atomic masses of the component atoms and you sum up.
You simply input the atomic mass of 3 atoms of Mg and 2 atoms of P
Atomic mass of Mg = 24.3g/mol
P = 30.97g/mole
Molar mass of Mg₃P₂ = 3(24.3) + 2(30.97) = 134.84g/mol
learn more:
Molar mass brainly.com/question/2861244
#learnwithbrainly
Ethylene Burns in the presence of O₂ to produce CO₂ and H₂O vapors;
C₂H₄ + 3 O₂ → 2 CO₂ + 2 H₂O
According to equation,
22.4 L (1 mole) C₂H₄ reacts completely to produce = 44.8 L (2 moles) of H₂O
So,
1.65 L of C₂H₄ on complete reaction will produce = X L of H₂O
Solving for X,
X = (1.65 L × 44.8 L) ÷ 22.4 L
X = 3.3 L of H₂O
Answer:
The law of multiple proportions is the third postulate of Dalton's atomic theory. It states that the masses of one element which combine with a fixed mass of the second element are in a ratio of whole numbers.
Therefore, the masses of oxygen in the two compounds that combine with a fixed mass of carbon should be in a whole number ratio. In 100 grams of the first compound (100 is chosen to make calculations easier), there are 57.1 grams oxygen and 42.9 grams carbon. The mass of oxygen (O) per gram of carbon (C) is:
57.1 g O / 42.9 g C = 1.33 g O per g C
In the 100 grams of the second compound, there are 72.7 grams of oxygen (O) and 27.3 grams of carbon (C). The mass of oxygen per gram of carbon is:
72.7 g O / 27.3 g C = 2.66 g O per g C
Dividing the mass O per g C of the second (larger value) compound:
2.66 / 1.33 = 2
This means that the masses of oxygen that combine with carbon are in a 2:1 ratio. The whole-number ratio is consistent with the law of multiple proportions.
Explanation: