Answer:
1.64x10⁻¹⁸ J
Explanation:
By the Bohr model, the electrons surround the nucleus of the atom in shells or levels of energy. Each one has it's energy, and the electron doesn't fall to the nucleus because it can reach another level of energy, and then return to its level.
When the electrons go to another level, it absorbs energy, and then, when return, this energy is released, as a photon (generally as luminous energy). The value of the energy can be calculated by:
E = hc/λ
Where h is the Planck constant (6.626x10⁻³⁴ J.s), c is the light speed (3.00x10⁸ m/s), and λ is the wavelength of the photon.
The wavelength can be calculated by:
1/λ = R*(1/nf² - 1/ni²)
Where R is the Rydberg constant (1.097x10⁷ m⁻¹), nf is the final orbit, and ni the initial orbit. So:
1/λ = 1.097x10⁷ *(1/1² - 1/2²)
1/λ = 8.227x10⁶
λ = 1.215x10⁻⁷ m
So, the energy is:
E = (6.626x10⁻³⁴ * 3.00x10⁸)/(1.215x10⁻⁷)
E = 1.64x10⁻¹⁸ J
Answer:
Protons and electrons
Explanation:
They have a different number of neutrons giving them a different atomic weight while having the same charge
Answer:
0.00370 g
Explanation:
From the given information:
To determine the amount of acid remaining using the formula:
where;
v_1 = volume of organic solvent = 20-mL
n = numbers of extractions = 4
v_2 = actual volume of water = 100-mL
k_d = distribution coefficient = 10
∴




Thus, the final amount of acid left in the water = 0.012345 * 0.30
= 0.00370 g
Answer:
Molecule
Explanation:
Molecule is defined as the discrete group of atoms that are held together by sharing valence electrons.
This is because two or more atoms is known as a molecule and for electron sharing to occur then there must be a minimum of two atoms which is also known as a molecule present in the sharing process.