Answer:
-81.5 degrees C or 191.5 K
Explanation:
We want to use Charles' gas law: V/T = V/T
Our initial volume is 3.20 L, and our initial temperature is 125 degrees C, or 125 + 273 = 398 degrees Kelvin.
Our new Volume is 1.54 L, but we don't know what the temperature is. So, we use the equation:
3.20 L / 398 K = 1.54 L / T ⇒ Solving for T, we get: T = 191.5 K
If we want this in degrees Celsius, we subtract 273: 191.5 - 273 = -81.5 degrees C
To solve this kinematics formula use the following equation:
Vf = Vi + at
Vf = 0 + (9.81 m/s^2)(3 seconds)
Vf = 29.43 m/s and or about 29.4 m/s of reported to 3 significant figures.
The answer is A. Na
because it's<span /> 5,1391
Answer:
a. fluorine
Explanation:
Fluorine is the element of group 17 and period 2. The electronic configuration of the element is
.
Stable oxidation state = -1 of fluorine as it gains one electron to gain noble gas configuration.
With alkali metals, which have oxidation state of +1 form ionic compound of the form, MX where X is F.
Among the halogens, fluorine forms the most stable halide because of the comparable size of the hydrogen and fluorine. Thus, it is the weakest acid when compared with other hydrogen halides.
Fluorine is the most reactive in the halogen series and thus, combines with most of the elements.
Fluorine forms inter-halogen compounds of form XA only. Example - ClF.
Hence, option a is correct.
Answer: It will take 3 days for half of a 10 g sample to decay.
Explanation:
Half-life of sample of an isotope X = 3 days
Sample decayed = 
N=
, time = t
![\ln[\frac{5}{10}]=-0.231\times t](https://tex.z-dn.net/?f=%5Cln%5B%5Cfrac%7B5%7D%7B10%7D%5D%3D-0.231%5Ctimes%20t)

t = 3 days
It will take 3 days for half of a 10 g sample to decay.