Explanation:
Protons have a positive charge. Electrons have a negative charge. The charge on the proton and electron are exactly the same size but opposite. Neutrons have no charge.
The pH of the sodium hydroxide (NaOH) solution at the given concentration of 0.000519 M is determined as 10.72.
<h3>What is pH of solution?</h3>
The pH of a solution is defined as the logarithm of the reciprocal of the hydrogen ion concentration [H+] of the given solution.
Concentration of the basic solution, [OH⁻] = 0.000519
pOH = -log[OH⁻]
pOH = -log[0.000519]
pOH = 3.28
<h3>pH of the solution</h3>
pH + pOH = 14
pH = 14 - pOH
pH = 14 - 3.28
pH = 10.72
Thus, the pH of the sodium hydroxide (NaOH) solution at the given concentration of 0.000519 M is determined as 10.72.
Learn more about pH here: brainly.com/question/26424076
the oxidation state of each atom
Answer:
V₂ = 1473.03 L
Explanation:
Given data:
Initial volume = 980 L
Initial pressure = 107.2 atm
Initial temperature = 71 °C (71 +273.15 = 344.15 K)
Final temperature = 13°C (13+273.15 = 286.15K)
Final volume = ?
Final pressure = 59.3 atm
Formula:
P₁V₁/T₁ = P₂V₂/T₂
Solution:
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 107.2 atm × 980L × 286.15 K / 344.15 K× 59.3 atm
V₂ = 30061774.4 atm .L. K / 20408.095 atm. K
V₂ = 1473.03 L