Answer:
You can simplify the problem down by recognizing that you just need to keep track of the integers you've seen in array that your given. You also need to account for edge cases for when the array is empty or the value you get would be greater than your max allowed value. Finally, you need to ensure O(n) complexity, you can't keep looping for every value you come across. This is where the boolean array comes in handy. See below -
public static int solution(int[] A)
{
int min = 1;
int max = 100000;
boolean[] vals = new boolean[max+1];
if(A.length == 0)
return min;
//mark the vals array with the integers we have seen in the A[]
for(int i = 0; i < A.length; i++)
{
if(A[i] < max + 1)
vals[A[i]] = true;
}
//start at our min val and loop until we come across a value we have not seen in A[]
for (int i = 1; i < max; i++)
{
if(vals[i] && min == i)
min++;
else if(!vals[i])
break;
}
if(min > max)
return max;
return min;
}
To professionally adress an introduction in a cover letter D. would be the correct answer.
Answer:
Each description of a PC needs to clarify how the PC handles data: numbers, text, pictures, sound, films, directions.
Using bits to represent data implies that the computer has to use a lot of memory since every character has a group of bits representing it.
The PC is an electronic gadget. Every one of its wires can either convey electric flow or... not convey current. Thus, similar to a light switch, it sees just two states. Incidentally, this is sufficient to make the entire thought work. Indeed, any framework that can speak to in any event two states can speak to data. Take, for instance, the Morse code that is utilized in telecommunication. Morse is a sound transmission framework that can convey a short signal (spoke to by a dab) and a long beeeeeep (spoke to by a scramble). Any letter or number can be spoken to by a mix of these two images. Snap here to see a Morse interpreter.
Explanation:
Essentially with PCs. To speak to a number, we utilize the parallel number-crunching framework, not the decimal number framework that we use in regular day to day existence. In the double framework, any number can be spoken to utilizing just two images, 0 and 1. (Morse is nearly, yet not exactly (because of the delays between letters) a paired framework. A framework firmly identified with Morse is utilized by PCs to do information pressure (more about this later).
There are six categories of security services: authenticiation, access control, data confidentiality, data integrity, nonrepudiation, and availability service. First, is authentication service, which defines as the assurance that the communicator is legitimate and is the one that it claims to be. It can either be peer entity or data origin authentication. Second, access control which is to prevent any unauthorized uses of resources. After one is being authenticiated, then this service limit/controls who access? what accessing rights to the resources are allowed depending on the identified individuals. Data confifentiality: the protection of data from unauthorized disclosure. Data integrity: the assurance that data received are exactly as sent by an authorized entity (e.t.c, contain no modificafion, insertion, deletion, or replay).