To solve this problem it is necessary to apply the concepts related to Normal Force, frictional force, kinematic equations of motion and Newton's second law.
From the kinematic equations of motion we know that the relationship of acceleration, velocity and distance is given by

Where,
Final velocity
Initial Velocity
a = Acceleration
x = Displacement
Acceleration can be expressed in terms of the drag coefficient by means of
Frictional Force
Force by Newton's second Law
Where,
m = mass
a= acceleration
Kinetic frictional coefficient
g = Gravity
Equating both equation we have that



Therefore,


Re-arrange to find x,

The distance traveled by the car depends on the coefficient of kinetic friction, acceleration due to gravity and initial velocity, therefore the three cars will stop at the same distance.
consider the motion of the tennis ball in downward direction
Y = vertical displacement = 400 m
a = acceleration = acceleration due to gravity = 9.8 m/s²
v₀ = initial velocity of the ball at the top of building = 10 m/s
v = final velocity of the ball when it hits the ground = ?
using the kinematics equation
v² = v²₀ + 2 a Y
inserting the values
v² = 10² + 2 (9.8) (400)
v = 89.11 m/s
Explanation:
Given Data:
mass of dog = 12 Kg
dog's center of mass = 0.20m
length of dog = 0.50m
height of dog's jump = ?
Solution:
Work done of gravitational force = Gain in Potential energy
2.1 × mgΔh = mg (h - 0.1)
2.1 × (0.3 - 0.1) = (h - 0.1)
h = 0.52 m
Answer:
Explanation:
recall that power is energy carried out or work done per time
P=W/t
P=2*10^6*35
t=6*60=420S
W=Energy
E=2*10^6*35*360S
E=25200000000
Energy stored by water from rest is called potential energy. Since the water is falling from a height , we calculate potential energy as thus
E=M*g*h
Assume that the water intakes are effectively 175 m above the electric generators. How much water must pass through the generators to power 2 million 35-W Las Vegas light bulbs for 6.0 minutes?
M=mass of water
g=acceleration due to gravity 9.81m/s^2
h=height ,175m
25200000000=M*9.81*175
M=
M=1716.75kg
When Janet leaves the platform, she's moving horizontally at 1.92 m/s. We assume that there's no air resistance, and gravity has no effect on horizontal motion. There's no horizontal force acting on Janet to make her move horizontally any faster or slower than 1.92 m/s.
She's in the air for 1.1 second before she hits the water.
Moving horizontally at 1.92 m/s for 1.1 second, she sails out away from the platform
(1.92 m/s) x (1.1 sec) = <em>2.112 meters</em>