Answer:
Later high school years and freshman year of college
Explanation:
The transition from high school to college is an important developmental milestone that holds the potential for personal growth and behavioral change. A cohort of 2,025 students was recruited during the summer before they matriculated into college and completed Internet-based surveys about their participation in a variety of behavioral risks during the last three months of high school and throughout the first year of college. Alcohol use, marijuana use, and sex with multiple partners increased during the transition from high school to college, whereas driving after drinking, aggression, and property crimes decreased. Those from rural high schools and those who elected to live in private dormitories in college were at highest risk for heavy drinking and driving after drinking.
Light travels in waves AND in bundles called "photons".
It's hard to imagine something that's a wave and also a bundle.
But it turns out that light behaves like both waves and bundles.
If you design an experiment to detect waves, then it responds to light.
And if you design an experiment to detect 'bundles' or particles, then
that one also responds to light.
Answer:
Temperature affects phase change by slowing down the movement in between the atoms, thus causing a change in kinetic energy, which in turn causes the atoms to undergo forms of combining or a type of disepersion.
Explanation:
Kinetic energy while being the reason phase changes are constant, Kinetic Energy can be caused by other means. Pressure and temperature can affect many other states kinetic energy, which in turn can affect each state of matter. Making a group of atoms or compounds compacts will force the atoms to move closer together thus with a lower net kinetic energy energy. Reducing temperature also works along the same lines. Colder temperatures can slow down atomic movements which in turn will naturally make each atom move close to each other.
With all of the information provided, it is only feasible that pressure and temperature are directly corresponding with the matter and atomic phase change
Answer:
a) F= 0,19 [N] according to problem statement
b) F = 0,19*10⁹ [N] using the right value of K
Explanation:
The force between two electric charges is according to Coulomb´s law is:
F = K * q₁*q₂ / d² where q₁ and q₂ are the charges on body one and body 2 respectively, d is the distance between the two bodies and K is a constant K = 8,988100*10⁹ N.m²/C². The problem establishes to use K = 8,988100 N.m²/C².
NOTE: To value of is : K = 8,988100*10⁹ N.m²/C². I am going to solve the problem using K = 8,988100 N.m²/C² if that information was an error, all we need to get the right answer is multiply the result by 10⁹
Then:
F = 8,988100 * 1,2* 0,36 / (4,5)² [ N*m²/C² ] * [ C*C*/m²]
F = 3,882859/ 20,25 [N]
F= 0,19 [N]
The force is of repulsion since the two charges are positive and in the direction of the straight line which passes through the centers of the bodies
Well, in order to figure out the answer is to divide until you figure out how many miles they went per second. If it takes 5 seconds to reach 50 miles per hour it took 10 seconds per every 10 miles meaning each mile took 1 second. (Not actually possible but the answer) So, If it finished a 100 mile trip in 2 hours it took an hour for 50 miles. If it took 1 hour for 50 miles divide 60/50 which gets you 1.2 so it took 1.2 miles per minute meaning the car went 120 miles per hour I believe. I hope this helps :)