Think of a wedge as something you put in between objects, so it is a separates objects
Answer:
1428.6m/s²
Explanation:
Given parameters:
Force applied on the body = 40N
Mass of the body = 28g
1000g = 1kg
28g will therefore be 0.028kg
Unknown:
Acceleration = ?
Solution:
To solve this problem, we use the expression derived from Newton's second law of motion.
Force = mass x acceleration
Insert the parameters and solve;
40 = 0.028 x acceleration
Acceleration =
= 1428.6m/s²
Answer:
You put the add sign, so it would be 49. I don't believe that is what you meant to put though.
Explanation:
Answer:
4.6 
Explanation:
Since the table is frictionless, there is no force of dynamic friction between table an block when the horizontal force is applied to it on Earth. Exactly the same is true when the table is taken to the Moon. Therefore, the Net Force acting on the object in both cases when the object accelerates, is the external horizontal force.
Notice that on Earth and on the Moon, the weight of the object (vertical and pointing up) is compensated by the normal force of the table on the object (pointing up and of the same magnitude as the weight) that precludes movement in the vertical direction. So in both cases, its acceleration will only be due to the horizontal force.
We use the equation for Net Force to find the mass of the object:

We use this mass (since the mass of the object is a constant independent of where the object is) to find the acceleration the object will experience when the 20 N horizontal force is applied on it on the Moon:

Answer:
10.21°C
Explanation:
From the question,we are given;
- Quantity of heat = 32,000 Joules
- Mass of water = 750 g
- Specific heat capacity of water = 4.18 J/g°C
We are required to calculate the change in temperature;
- We need to know that quantity of heat is calculated by multiplying mass by specific heat then by change in temperature.
- That is;
Q = m × c × ΔT
Rearranging the formula;
ΔT = (Q ÷ (m × c))
= 32,000 J ÷ (750× 4.18 J/g°C)
= 10.21°C
Therefore, the change in temperature is 10.21°C