Answer:
Photosynthesis takes the energy of sunlight and combines water and carbon dioxide to produce sugar and oxygen as a waste product. The reactions of respiration take sugar and consume oxygen to break it down into carbon dioxide and water, releasing energy.
Explanation:
Answer:
Explanation:
False
Because " like dissolve like " polar solute dissolve in polar solvent and vice versa
24.25 moles of NO can be produced using 97 moles of HNO3.
<h3>What is balanced chemical equation?</h3>
Equal numbers of atoms from various elements are present in both the reactants and the products in balanced chemical equations. Varied elements' atom counts in the reactants and products of unbalanced chemical equations are different.
3 Cu + 8HNO3 g → 3 Cu(NO3)2 + 2 NO + 4 H2O
The number of moles consumed can be calculated using comparing with coefficients in the balanced reaction .
So , from above eq we get that 8 moles of HNO3 are consumed to make 2 moles of NO.
⇒ 8 HNO3⇔2 NO
⇒ 1 HNO3⇔ 1/4 NO
This means that for each mole of HNO3 produces 1/4 moles of NO.
So , for 97 moles of HNO3 ,
moles of NO can be made,
So, total moles of NO made are 24.25 moles.
Lean more about balanced reactions here brainly.com/question/26694427
#SPJ10
Answer:
1. False
2. False
3. True
4. False
Explanation:
1. CBr4 is more volatile than CCl4 False
The molecular weight of CBr4 is is greater than the CCl4, therefore it has less tendency to escape to the gas phase. Also, the CBr4 has greater London dispersion forces compared to CCl4 since bromine is a larger atom than chlorine.
2. CBr4 has a higher vapor pressure at the same temperature than CCl4 False
For the same reasons as above, the vapor pressure of CBr4 is smaller than the vapor pressure of CCl4
3. CBr4 has a higher boling point than CCl4 True
Again, CBr4 having a molecular weight greater than CCl4 ( 331 g/mol vs 158.2 g/mol) is heavier and less volatile with a higher boiling point than CCl4.
4. CBr4 has weaker intermolecular forces than CCl4 False
Both molecules are non-polar because the dipole moments in C-Cl and C-Br bonds cancel in the tetrahedron. The only possible molecular forces are of the London dispersion type which are temporary and greater for larger atoms.
Data:
P (pressure) = 2.3 atm
V (volume) = 120 L
T (temperature) = 340 K
n (number of mols) = ?
R (Gas constant) = 0.082 (atm*L/mol*K)
Formula:

Solving:




