Explanation:
A Bronsted-Lowry base is a substance that accepts a proton in the form of a hydrogen (H) atom.
On the other hand;
Bronsted-Lowry acid is the substance that donates the proton.
HF (aq) + SO32- ⇌ F- + HSO3-
In the forward reaction;
Bronsted-Lowry acid : HF
Bronsted-Lowry base: SO32-
In the backward reaction;
Bronsted-Lowry acid : HSO3-
Bronsted-Lowry base: F-
The conjugate base of HF is F-
The conjugate acid of SO32- is HSO3-
n = m / M
Where, n is moles of the compound (mol), m is the mass of the compound (g) and M is the molar mass of the compound (g/mol)
Here, the given ethanol mass = 50.0 kg = 50.0 x 10³ g
Molar mass of the ethanol = (12 x 2 + 1x 6 + 1 x 16) g/mol
= 46 g/mol
Hence, moles in 50.0kg of ethanol = 50.0 x 10³ g / 46 g/mol
= 1086.96 mol
Henderson–Hasselbalch equation is given as,
pH = pKa + log [A⁻] / [HA]
-------- (1)
Solution:
Convert Ka into pKa,
pKa = -log Ka
pKa = -log 1.37 × 10⁻⁴
pKa = 3.863
Putting value of pKa and pH in eq.1,
4.29 = 3.863 + log [lactate] / [lactic acid]
Or,
log [lactate] / [lactic acid] = 4.29 - 3.863
log [lactate] / [lactic acid] = 0.427
Taking Anti log,
[lactate] / [lactic acid]
= 2.673
Result:
2.673 M
lactate salt when mixed with 1 M Lactic acid produces a buffer of pH = 4.29.
Answer:
¨molecular compounds are formed by the sharing of electrons, and ionic compounds are formed by the transfer of electrons¨
Explanation: