Answer:
λ = 162 10⁻⁷ m
Explanation:
Bohr's model for the hydrogen atom gives energy by the equation
= - k²e² / 2m (1 / n²)
Where k is the Coulomb constant, e and m the charge and mass of the electron respectively and n is an integer
The Planck equation
E = h f
The speed of light is
c = λ f
E = h c /λ
For a transition between two states we have
-
= - k²e² / 2m (1 /
² -1 /
²)
h c / λ = -k² e² / 2m (1 /
² - 1/
²)
1 / λ = (- k² e² / 2m h c) (1 /
² - 1/
²)
The Rydberg constant with a value of 1,097 107 m-1 is the result of the constant in parentheses
Let's calculate the emission of the transition
1 /λ = 1.097 10⁷ (1/10² - 1/8²)
1 / λ = 1.097 10⁷ (0.01 - 0.015625)
1 /λ = 0.006170625 10⁷
λ = 162 10⁻⁷ m
Chlorine forms hydrochloric acid when reacted with hydrogen
A camera lens (also known as photographic lens or photographic objective) is an optical lens or assembly of lenses used in conjunction with a camera body and mechanism to make images of objects either on photographic film or on other media capable of storing an image chemically or electronically.
If you are in this kind of geographical scenery, you must be on a surfing beach in California. The Californian coastline is characterized by a numerous number of beaches that are mainly sandy and features major rivers such as the Sacramento River and the Colorado River.